Export of calcium carbonate corrosive waters from the East Siberian Sea

Xehetasun bibliografikoak
Parent link:Biogeosciences/ European Geosciences Union, EGU
Vol. 14, iss. 7.— 2017.— [P. 1811-1823]
Erakunde egilea: Национальный исследовательский Томский политехнический университет (ТПУ) Институт природных ресурсов (ИПР) Кафедра геологии и разведки полезных ископаемых (ГРПИ)
Beste egile batzuk: Anderson L. G. Leif, Ek J. Jorgen, Ericson Y. Ylva, Humborg C. Christoph, Semiletov I. P. Igor Petrovich, Sundbom M. Marcus, Ulfsbo A. Adam
Gaia:Title screen
The Siberian shelf seas are areas of extensive biogeochemical transformation of organic matter, both of marine and terrestrial origin. This in combination with brine production from sea ice formation results in a cold bottom water of relative high salinity and partial pressure of carbon dioxide (pCO2). Data from the SWERUS-C3 expedition compiled on the icebreaker Oden in July to September 2014 show the distribution of such waters at the outer shelf, as well as their export into the deep central Arctic basins. Very high pCO2 water, up to ∼ 1000 µatm, was observed associated with high nutrients and low oxygen concentrations. Consequently, this water had low saturation state with respect to calcium carbonate down to less than 0.8 for calcite and 0.5 for aragonite. Waters undersaturated in aragonite were also observed in the surface in waters at equilibrium with atmospheric CO2; however, at these conditions the cause of undersaturation was low salinity from river runoff and/or sea ice melt. The calcium carbonate corrosive water was observed all along the continental margin and well out into the deep Makarov and Canada basins at a depth from about 50 m depth in the west to about 150 m in the east. These waters of low aragonite saturation state are traced in historic data to the Canada Basin and in the waters flowing out of the Arctic Ocean north of Greenland and in the western Fram Strait, thus potentially impacting the marine life in the North Atlantic Ocean.
Argitaratua: 2017
Gaiak:
Sarrera elektronikoa:http://dx.doi.org/10.5194/bg-14-1811-2017
Formatua: Baliabide elektronikoa Liburu kapitulua
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=654621

MARC

LEADER 00000naa0a2200000 4500
001 654621
005 20250312153916.0
035 |a (RuTPU)RU\TPU\network\20257 
035 |a RU\TPU\network\18325 
090 |a 654621 
100 |a 20170506d2017 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Export of calcium carbonate corrosive waters from the East Siberian Sea  |f L. G. Anderson [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 1821-1823 (49 tit.)] 
330 |a The Siberian shelf seas are areas of extensive biogeochemical transformation of organic matter, both of marine and terrestrial origin. This in combination with brine production from sea ice formation results in a cold bottom water of relative high salinity and partial pressure of carbon dioxide (pCO2). Data from the SWERUS-C3 expedition compiled on the icebreaker Oden in July to September 2014 show the distribution of such waters at the outer shelf, as well as their export into the deep central Arctic basins. Very high pCO2 water, up to ∼ 1000 µatm, was observed associated with high nutrients and low oxygen concentrations. Consequently, this water had low saturation state with respect to calcium carbonate down to less than 0.8 for calcite and 0.5 for aragonite. Waters undersaturated in aragonite were also observed in the surface in waters at equilibrium with atmospheric CO2; however, at these conditions the cause of undersaturation was low salinity from river runoff and/or sea ice melt. The calcium carbonate corrosive water was observed all along the continental margin and well out into the deep Makarov and Canada basins at a depth from about 50 m depth in the west to about 150 m in the east. These waters of low aragonite saturation state are traced in historic data to the Canada Basin and in the waters flowing out of the Arctic Ocean north of Greenland and in the western Fram Strait, thus potentially impacting the marine life in the North Atlantic Ocean. 
461 |t Biogeosciences  |f European Geosciences Union, EGU 
463 |t Vol. 14, iss. 7  |v [P. 1811-1823]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a карбонат кальция 
610 1 |a Восточно-Сибирское море 
610 1 |a шельфы 
610 1 |a углерод 
610 1 |a углекислый газ 
701 1 |a Anderson  |b L. G.  |g Leif 
701 1 |a Ek  |b J.  |g Jorgen 
701 1 |a Ericson  |b Y.  |g Ylva 
701 1 |a Humborg  |b C.  |g Christoph 
701 1 |a Semiletov  |b I. P.  |c geographer  |c Professor of Tomsk Polytechnic University, doctor of geographical Sciences  |f 1955-  |g Igor Petrovich  |3 (RuTPU)RU\TPU\pers\34220 
701 1 |a Sundbom  |b M.  |g Marcus 
701 1 |a Ulfsbo  |b A.  |g Adam 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт природных ресурсов (ИПР)  |b Кафедра геологии и разведки полезных ископаемых (ГРПИ)  |3 (RuTPU)RU\TPU\col\18660 
801 2 |a RU  |b 63413507  |c 20170506  |g RCR 
856 4 |u http://dx.doi.org/10.5194/bg-14-1811-2017 
942 |c CF