On automatic tuning of basis functions in Bezier method

Dades bibliogràfiques
Parent link:Journal of Physics: Conference Series
Vol. 803 : Information Technologies in Business and Industry (ITBI2016).— 2017.— [012126, 7 p.]
Autor corporatiu: Национальный исследовательский Томский политехнический университет (ТПУ) Институт кибернетики (ИК) Кафедра иностранных языков института кибернетики (ИЯИК), Национальный исследовательский Томский политехнический университет (ТПУ) Институт кибернетики (ИК)
Altres autors: Reizlin (Reyzlin) V. I. Valery Izrailevich, Demin A. Yu. Anton Yurievich, Rybushkina S. V. Svetlana Vladimirovna, Sultanguzin M. F.
Sumari:Title screen
A transition from the fixed basis in Bezier's method to some class of base functions is proposed. A parameter vector of a basis function is introduced as additional information. This achieves a more universal form of presentation and analytical description of geometric objects as compared to the non-uniform rational B-splines (NURBS). This enables control of basis function parameters including control points, their weights and node vectors. This approach can be useful at the final stage of constructing and especially local modification of compound curves and surfaces with required differential and shape properties; it also simplifies solution of geometric problems. In particular, a simple elimination of discontinuities along local spline curves due to automatic tuning of basis functions is demonstrated.
Publicat: 2017
Matèries:
Accés en línia:http://dx.doi.org/10.1088/1742-6596/803/1/012126
http://earchive.tpu.ru/handle/11683/38181
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=654410
Descripció
Sumari:Title screen
A transition from the fixed basis in Bezier's method to some class of base functions is proposed. A parameter vector of a basis function is introduced as additional information. This achieves a more universal form of presentation and analytical description of geometric objects as compared to the non-uniform rational B-splines (NURBS). This enables control of basis function parameters including control points, their weights and node vectors. This approach can be useful at the final stage of constructing and especially local modification of compound curves and surfaces with required differential and shape properties; it also simplifies solution of geometric problems. In particular, a simple elimination of discontinuities along local spline curves due to automatic tuning of basis functions is demonstrated.
DOI:10.1088/1742-6596/803/1/012126