A solution to the problem of clustered objects compact partitioning

Opis bibliograficzny
Parent link:Journal of Physics: Conference Series
Vol. 803 : Information Technologies in Business and Industry (ITBI2016).— 2017.— [012117, 5 p.]
Korporacja: Национальный исследовательский Томский политехнический университет (ТПУ) Институт кибернетики (ИК)
Kolejni autorzy: Pogrebnoy D. V. Dmitrii Vladimirovich, Pogrebnoy A. V. Aleksandr Vladimirovich, Deeva O. V. Olga Vladimirovna, Petrukhina I. A.
Streszczenie:Title screen
The urgency of the study consists in the fact that an object arrangement topology of a distributed system is often nonuniform. Objects can be placed at different distances from each other, thus forming clusters. That is why solving the problem of compact partitioning into sets containing thousands of objects requires the most effective way to a better use of natural structuring of objects that form clusters. The aim of the study is the development of methods of compact partitioning of sets of objects presented as clusters. The research methods are based on applied theories of sets, theory of compact sets and compact partitions, and linear programming methods with Boolean variables. As a result, the paper offers the method necessary to analyze composition and content of clusters. It also evaluates cluster compactness, which results in the decision to include clusters into the sets of partitions. It addresses the problem of optimizing the rearrangement of objects between compact sets that form clusters, which is based on the criteria of maximizing the total compactness of sets. The problem is formulated in the class of objectives of linear programming methods with Boolean variables. It introduces the example of object rearrangement.
Język:angielski
Wydane: 2017
Hasła przedmiotowe:
Dostęp online:http://dx.doi.org/10.1088/1742-6596/803/1/012117
http://earchive.tpu.ru/handle/11683/38174
Format: Elektroniczne Rozdział
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=654394

MARC

LEADER 00000nla2a2200000 4500
001 654394
005 20240206161804.0
035 |a (RuTPU)RU\TPU\network\19988 
035 |a RU\TPU\network\19985 
090 |a 654394 
100 |a 20170426a2017 k y0engy50 ba 
101 0 |a eng 
105 |a y z 100zy 
135 |a drgn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a A solution to the problem of clustered objects compact partitioning  |f D. V. Pogrebnoy [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 10 tit.] 
330 |a The urgency of the study consists in the fact that an object arrangement topology of a distributed system is often nonuniform. Objects can be placed at different distances from each other, thus forming clusters. That is why solving the problem of compact partitioning into sets containing thousands of objects requires the most effective way to a better use of natural structuring of objects that form clusters. The aim of the study is the development of methods of compact partitioning of sets of objects presented as clusters. The research methods are based on applied theories of sets, theory of compact sets and compact partitions, and linear programming methods with Boolean variables. As a result, the paper offers the method necessary to analyze composition and content of clusters. It also evaluates cluster compactness, which results in the decision to include clusters into the sets of partitions. It addresses the problem of optimizing the rearrangement of objects between compact sets that form clusters, which is based on the criteria of maximizing the total compactness of sets. The problem is formulated in the class of objectives of linear programming methods with Boolean variables. It introduces the example of object rearrangement. 
461 0 |0 (RuTPU)RU\TPU\network\3526  |t Journal of Physics: Conference Series 
463 0 |0 (RuTPU)RU\TPU\network\19875  |t Vol. 803 : Information Technologies in Business and Industry (ITBI2016)  |o International Conference, 21–26 September 2016, Tomsk, Russian Federation  |o [proceedings]  |f National Research Tomsk Polytechnic University (TPU) ; eds. N. V. Martyushev ; V. S. Avramchuk ; V. A. Faerman  |v [012117, 5 p.]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a компактное разбиение 
610 1 |a распределенные объекты 
610 1 |a кластеры 
610 1 |a линейное программирование 
610 1 |a распределенные системы 
610 1 |a компактное разбиение 
610 1 |a множества 
701 1 |a Pogrebnoy  |b D. V.  |c Specialist in the field of informatics and computer technology  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1968-  |g Dmitrii Vladimirovich  |3 (RuTPU)RU\TPU\pers\38440  |9 20767 
701 1 |a Pogrebnoy  |b A. V.  |c specialist in the field of Informatics and computer engineering  |c Associate Professor of Tomsk Polytechnic University, candidate of technical sciences  |f 1973-  |g Aleksandr Vladimirovich  |3 (RuTPU)RU\TPU\pers\33679  |9 17310 
701 1 |a Deeva  |b O. V.  |c specialist in educational and methodical work, leading expert of Tomsk Polytechnic University  |f 1978-  |g Olga Vladimirovna  |3 (RuTPU)RU\TPU\pers\37778 
701 1 |a Petrukhina  |b I. A. 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт кибернетики (ИК)  |3 (RuTPU)RU\TPU\col\18397 
801 2 |a RU  |b 63413507  |c 20170428  |g RCR 
856 4 |u http://dx.doi.org/10.1088/1742-6596/803/1/012117 
856 4 |u http://earchive.tpu.ru/handle/11683/38174 
942 |c CF