Extraction of the Fetal Electrocardiogram Using Dynamic Neural Networks
| Parent link: | Biomedical Engineering.— , 1967- Vol. 50, iss. 6.— 2017.— [P. 371–375] |
|---|---|
| Autor Principal: | |
| Autor Corporativo: | |
| Outros autores: | |
| Summary: | Title screen This article presents a nonlinear dynamics model for discriminating the sources of the maternal abdominal elec-trocardiogram (aECG). The coefficients of the separating matrix were determined by training a neural network. This method provides efficient extraction of the fetal electrocardiogram (fECG) independently of the choice of recording point, input signal duration, or number of independent leads. Режим доступа: по договору с организацией-держателем ресурса |
| Idioma: | inglés |
| Publicado: |
2017
|
| Subjects: | |
| Acceso en liña: | http://dx.doi.org/10.1007/s10527-017-9658-y |
| Formato: | Electrónico Capítulo de libro |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=654338 |
| Summary: | Title screen This article presents a nonlinear dynamics model for discriminating the sources of the maternal abdominal elec-trocardiogram (aECG). The coefficients of the separating matrix were determined by training a neural network. This method provides efficient extraction of the fetal electrocardiogram (fECG) independently of the choice of recording point, input signal duration, or number of independent leads. Режим доступа: по договору с организацией-держателем ресурса |
|---|---|
| DOI: | 10.1007/s10527-017-9658-y |