New Methods of Three-Dimensional Images Recognition Based on Stochastic Geometry and Functional Analysis

Bibliographic Details
Parent link:IOP Conference Series: Materials Science and Engineering
Vol. 177 : Mechanical Engineering, Automation and Control Systems (MEACS 2016).— 2017.— [012047, 5 p.]
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Юргинский технологический институт (филиал) (ЮТИ) Кафедра экономики и автоматизированных систем управления (ЭАСУ)
Other Authors: Fedotov N. G., Moiseev A. V., Syemov A. A., Lizunkov V. G. Vladislav Gennadyevich, Kindaev A. Y.
Summary:Title screen
A new approach to 3D objects recognition based on modern methods of stochastic geometry and functional analysis is proposed in the paper. A detailed mathematical description of the method developed on the approach is also presented. The 3D trace transform allows creating an invariant description of spatial objects, which better resist distortion and coordinate noise than the one, obtained as a result of the object normalization procedure, does. The ability to control properties of developed features increases intellectual capacities of the 3D trace transform significantly, which can be mentioned as its undeniable advantage. The justification of the proposed theory and mathematical model is a variety of worked out theoretical examples of hypertriplet features that have particular described properties. The paper considers in detail scan techniques of the hypertrace transform and its mathematical model as well as approaches to developing and distinguishing informative features.
Language:English
Published: 2017
Series:Information technologies in Mechanical Engineering
Subjects:
Online Access:http://dx.doi.org/10.1088/1757-899X/177/1/012047
http://earchive.tpu.ru/handle/11683/37853
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=654050

MARC

LEADER 00000nla2a2200000 4500
001 654050
005 20231102025954.0
035 |a (RuTPU)RU\TPU\network\19565 
035 |a RU\TPU\network\19563 
090 |a 654050 
100 |a 20170406a2017 k y0engy50 ba 
101 0 |a eng 
105 |a y z 100zy 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a New Methods of Three-Dimensional Images Recognition Based on Stochastic Geometry and Functional Analysis  |f N. G. Fedotov [et al.] 
203 |a Text  |c electronic 
225 1 |a Information technologies in Mechanical Engineering 
300 |a Title screen 
320 |a [References: 10 tit.] 
330 |a A new approach to 3D objects recognition based on modern methods of stochastic geometry and functional analysis is proposed in the paper. A detailed mathematical description of the method developed on the approach is also presented. The 3D trace transform allows creating an invariant description of spatial objects, which better resist distortion and coordinate noise than the one, obtained as a result of the object normalization procedure, does. The ability to control properties of developed features increases intellectual capacities of the 3D trace transform significantly, which can be mentioned as its undeniable advantage. The justification of the proposed theory and mathematical model is a variety of worked out theoretical examples of hypertriplet features that have particular described properties. The paper considers in detail scan techniques of the hypertrace transform and its mathematical model as well as approaches to developing and distinguishing informative features. 
461 0 |0 (RuTPU)RU\TPU\network\2008  |t IOP Conference Series: Materials Science and Engineering 
463 0 |0 (RuTPU)RU\TPU\network\19514  |t Vol. 177 : Mechanical Engineering, Automation and Control Systems (MEACS 2016)  |o International Conference, October 27–29, 2016, Tomsk, Russia  |o [proceedings]  |f National Research Tomsk Polytechnic University (TPU) ; eds. A. P. Zykova ; N. V. Martyushev  |v [012047, 5 p.]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a распознавание изображений 
610 1 |a трехмерные изображения 
610 1 |a стохастическая геометрия 
610 1 |a функциональный анализ 
610 1 |a 3D-объекты 
610 1 |a математические модели 
610 1 |a информационные функции 
701 1 |a Fedotov  |b N. G. 
701 1 |a Moiseev  |b A. V. 
701 1 |a Syemov  |b A. A. 
701 1 |a Lizunkov  |b V. G.  |c Economist  |c Associate Professor of Yurga Technological Institute (branch) of Tomsk Polytechnic University, Candidate of pedagogical sciences  |f 1986-  |g Vladislav Gennadyevich  |2 stltpush  |3 (RuTPU)RU\TPU\pers\35244  |9 18509 
701 1 |a Kindaev  |b A. Y. 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Юргинский технологический институт (филиал) (ЮТИ)  |b Кафедра экономики и автоматизированных систем управления (ЭАСУ)  |h 360  |2 stltpush  |3 (RuTPU)RU\TPU\col\18900 
801 2 |a RU  |b 63413507  |c 20170411  |g RCR 
856 4 |u http://dx.doi.org/10.1088/1757-899X/177/1/012047 
856 4 |u http://earchive.tpu.ru/handle/11683/37853 
942 |c CF