Nanostructured titanium-based materials for medical implants: Modeling and development

Bibliographic Details
Parent link:Materials Science and Engineering: R: Reports.— , 1993-
Vol. 81.— 2014.— [P. 1-19]
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Институт физики высоких технологий (ИФВТ) Кафедра физики высоких технологий в машиностроении (ФВТМ)
Other Authors: Mishnaevsky Jr. L., Levashov E., Valiev R. Z., Segurado J., Sabirov I., Enikeev N., Prokoshkin S., Solov’yov A. V., Korotitskiy A., Gutmanas E., Gotman I., Rabkin E., Psakhie S. G. Sergey Grigorievich
Summary:Title screen
Nanostructuring of titanium-based implantable devices can provide them with superior mechanical properties and enhanced biocompatibity. An overview of advanced fabrication technologies of nanostructured, high strength, biocompatible Ti and shape memory Ni–Ti alloy for medical implants is given. Computational methods of nanostructure properties simulation and various approaches to the computational, “virtual” testing and numerical optimization of these materials are discussed. Applications of atomistic methods, continuum micromechanics and crystal plasticity as well as analytical models to the analysis of the reserves of the improvement of materials for medical implants are demonstrated. Examples of successful development of a nanomaterial-based medical implants are presented.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2014
Subjects:
Online Access:http://dx.doi.org/10.1016/j.mser.2014.04.002
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=653772
Description
Summary:Title screen
Nanostructuring of titanium-based implantable devices can provide them with superior mechanical properties and enhanced biocompatibity. An overview of advanced fabrication technologies of nanostructured, high strength, biocompatible Ti and shape memory Ni–Ti alloy for medical implants is given. Computational methods of nanostructure properties simulation and various approaches to the computational, “virtual” testing and numerical optimization of these materials are discussed. Applications of atomistic methods, continuum micromechanics and crystal plasticity as well as analytical models to the analysis of the reserves of the improvement of materials for medical implants are demonstrated. Examples of successful development of a nanomaterial-based medical implants are presented.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1016/j.mser.2014.04.002