Ignition of a metallized composite solid propellant by a group of hot particles

Bibliographic Details
Parent link:Combustion, Explosion, and Shock Waves.— , 1965-
Vol. 52, № 6.— 2016.— [P. 694–702]
Main Author: Glushkov D. O. Dmitry Olegovich
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Энергетический институт (ЭНИН) Кафедра автоматизации теплоэнергетических процессов (АТП)
Other Authors: Kuznetsov G. V. Geny Vladimirovich, Strizhak P. A. Pavel Alexandrovich
Summary:Title screen
The solid-state ignition of a metallized composite propellant (ammonium perchlorate + 14% butyl rubber +5% aluminum powder + 6% plasticizer) under local heating by several sources of limited power capacity (dimensions of the hot particle xp = 4 mm and yp = 2 mm) was studied by mathematical modeling. For the temperature of the heated steel particles and the distance between them varied in the ranges 700 < Tp < 1500 K and 0.1xp < Δx < 1.5xp, respectively, the values of Tp and Δx were determined for which the ignition delay corresponds to the initiation of combustion of the composite propellant by a single particle, by a plate at a constant temperature or by several particles. In the region of low initial temperatures of the local sources (Tp < 1100 K), the limiting values Δx → 0.1xp and Δx > 1.5xp, were identified for which the characteristics and mechanism of ignition of the propellant by a group of heated particles can be studied using the “plate-propellant-gas” model and the “single particle-propellant-gas” model, respectively. Decreasing the distance Δx at Tp < 1100 K decreases the induction period to 50% and reduces the minimum initial temperature of the source required to initiate propellant combustion from 830 to 700 K. At Tp > 1100 K, the ignition of the metallized composite solid propellant by a single or several particles can be studied using relatively simple one-dimensional models of condensed material ignition by a plate at constant temperature. The variation in the ignition delay in this case is less than 5%.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2016
Subjects:
Online Access:http://dx.doi.org/10.1134/S0010508216060095
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=653674

Similar Items