Ultrarelativistic Spinning Particle and a Rotating Body in External Fields

Bibliographic Details
Parent link:Advances in High Energy Physics: Scientific Journal
Vol. 2016.— 2016.— [28 p.]
Main Author: Deriglazov A. A. Alexei Anatolievich
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Физико-технический институт (ФТИ) Кафедра высшей математики и математической физики (ВММФ) Международная лаборатория математической физики (МЛМФ)
Other Authors: Ramírez W. G. Walberto Guzmán
Summary:Title screen
We use the vector model of spinning particle to analyze the influence of spin-field coupling on the particle's trajectory in ultrarelativistic regime. The Lagrangian with minimal spin-gravity interaction yields the equations equivalent to the Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations of a rotating body. We show that they have unsatisfactory behavior in the ultrarelativistic limit. In particular, three-dimensional acceleration of the particle becomes infinite in the limit. Therefore, we examine the nonminimal interaction through the gravimagnetic moment and show that the theory with is free of the problems detected in MPTD equations. Hence, the nonminimally interacting theory seems a more promising candidate for description of a relativistic rotating body in general relativity. Vector model in an arbitrary electromagnetic field leads to generalized Frenkel and BMT equations. If we use the usual special-relativity notions for time and distance, the maximum speed of the particle with anomalous magnetic moment in an electromagnetic field is different from the speed of light. This can be corrected assuming that the three-dimensional geometry should be defined with respect to an effective metric induced by spin-field interaction.
Language:English
Published: 2016
Subjects:
Online Access:http://earchive.tpu.ru/handle/11683/38261
http://dx.doi.org/10.1155/2016/1376016
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=653262

MARC

LEADER 00000naa0a2200000 4500
001 653262
005 20250226164724.0
035 |a (RuTPU)RU\TPU\network\18672 
035 |a RU\TPU\network\1657 
090 |a 653262 
100 |a 20170220d2016 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drnn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Ultrarelativistic Spinning Particle and a Rotating Body in External Fields  |f A. A. Deriglazov, W. G. Ramírez 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 38 tit.] 
330 |a We use the vector model of spinning particle to analyze the influence of spin-field coupling on the particle's trajectory in ultrarelativistic regime. The Lagrangian with minimal spin-gravity interaction yields the equations equivalent to the Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations of a rotating body. We show that they have unsatisfactory behavior in the ultrarelativistic limit. In particular, three-dimensional acceleration of the particle becomes infinite in the limit. Therefore, we examine the nonminimal interaction through the gravimagnetic moment and show that the theory with is free of the problems detected in MPTD equations. Hence, the nonminimally interacting theory seems a more promising candidate for description of a relativistic rotating body in general relativity. Vector model in an arbitrary electromagnetic field leads to generalized Frenkel and BMT equations. If we use the usual special-relativity notions for time and distance, the maximum speed of the particle with anomalous magnetic moment in an electromagnetic field is different from the speed of light. This can be corrected assuming that the three-dimensional geometry should be defined with respect to an effective metric induced by spin-field interaction. 
461 |t Advances in High Energy Physics  |o Scientific Journal 
463 |t Vol. 2016  |v [28 p.]  |d 2016 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a спиновые частицы 
610 1 |a эквиваленты 
610 1 |a электромагнитные поля 
610 1 |a магнитные моменты 
610 1 |a трехмерная геометрия 
700 1 |a Deriglazov  |b A. A.  |c mathematician  |c Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences  |f 1962-  |g Alexei Anatolievich  |3 (RuTPU)RU\TPU\pers\34651 
701 1 |a Ramírez  |b W. G.  |g Walberto Guzmán 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Физико-технический институт (ФТИ)  |b Кафедра высшей математики и математической физики (ВММФ)  |b Международная лаборатория математической физики (МЛМФ)  |3 (RuTPU)RU\TPU\col\21297 
801 2 |a RU  |b 63413507  |c 20170504  |g RCR 
856 4 |u http://earchive.tpu.ru/handle/11683/38261 
856 4 |u http://dx.doi.org/10.1155/2016/1376016 
942 |c CF