Contrasting regimes for organic matter degradation in the East Siberian Sea and the Laptev Sea assessed through microbial incubations and molecular markers

ग्रंथसूची विवरण
Parent link:Marine Chemistry: open access journal.— , 1972-
Vol. 170.— 2015.— [ Р. 11-22]
निगमित लेखक: Национальный исследовательский Томский политехнический университет (ТПУ) Институт природных ресурсов (ИПР) Кафедра геологии и разведки полезных ископаемых (ГРПИ) Международная научно-образовательная лаборатория изучения углерода арктических морей (МНОЛ ИУАМ)
अन्य लेखक: Karlsson E. S., Brüchert V., Tesi T., Charkin A., Dudarev O. V. Oleg Viktorovich, Semiletov I. P. Igor Petrovich, Gustafsson Ö
सारांश:Title screen
Compositional studies of organic matter on the East Siberian Arctic Shelf (ESAS) suggest that different terrestrial carbon pools have different propensities for transport and/or degradation. The current study combined laboratory-based microbial degradation experiments with earlier published degradation-diagnostic composition of several classes of terrestrial biomarkers on the same sediments to investigate differences and driving forces of terrestrial organic matter (TerrOM) degradation in two biogeochemically-contrasting regimes of the ESAS.The incubation-based anaerobic degradation rates were consistently higher (by average factor of 6) in the East Siberian Sea Kolyma Paleoriver Channel (ESS-KPC) (15 µmol CO2 g OC- 1 day- 1) compared to the Laptev Sea Buor-Khaya Bay (LS-BKB) (2.4 µmol CO2 g OC- 1 day- 1).
The reported molecular markers show similarities between the terrestrial carbon pools in the two systems, but impose contrasting degradation regimes in combination with the incubation results. For the LS-BKB, there was a strong relationship between the degradation rates and the three lignin phenol-based degradation proxies (r2 = 0.93-0.96, p < 0.01, linear regression) and two wax lipid-based degradation proxies (r2 = 0.71 and 0.66, p < 0.05, linear regression). In contrast, for the ESS-KPC system, there was no relationship between incubation-based degradation rates and molecular marker-based degradation status of TerrOM. A principal component analysis indicated that short-chain fatty acids and dicarboxylic acids from CuO oxidation are mainly of terrestrial origin in the LS-BKB, but mainly of marine origin in the ESS-KPC. Hence, the microbial degradation in the western (LS-BKB) system appears to be fueled by TerrOM whereas the eastern (ESS-KPC) system degradation appears to be driven by MarOM. By combining molecular fingerprinting of TerrOM degradation state with laboratory-based degradation studies on the same ESAS sediments, a picture evolves of two distinctly different modes of TerrOM degradation in different parts of the ESAS system.
Режим доступа: по договору с организацией-держателем ресурса
प्रकाशित: 2015
विषय:
ऑनलाइन पहुंच:http://dx.doi.org/10.1016/j.marchem.2014.12.005
स्वरूप: इलेक्ट्रोनिक पुस्तक अध्याय
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=653181

MARC

LEADER 00000naa0a2200000 4500
001 653181
005 20250220163306.0
035 |a (RuTPU)RU\TPU\network\18577 
035 |a RU\TPU\network\18571 
090 |a 653181 
100 |a 20170214d2015 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Contrasting regimes for organic matter degradation in the East Siberian Sea and the Laptev Sea assessed through microbial incubations and molecular markers  |f E. S. Karlsson [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 52 tit.] 
330 |a Compositional studies of organic matter on the East Siberian Arctic Shelf (ESAS) suggest that different terrestrial carbon pools have different propensities for transport and/or degradation. The current study combined laboratory-based microbial degradation experiments with earlier published degradation-diagnostic composition of several classes of terrestrial biomarkers on the same sediments to investigate differences and driving forces of terrestrial organic matter (TerrOM) degradation in two biogeochemically-contrasting regimes of the ESAS.The incubation-based anaerobic degradation rates were consistently higher (by average factor of 6) in the East Siberian Sea Kolyma Paleoriver Channel (ESS-KPC) (15 µmol CO2 g OC- 1 day- 1) compared to the Laptev Sea Buor-Khaya Bay (LS-BKB) (2.4 µmol CO2 g OC- 1 day- 1). 
330 |a The reported molecular markers show similarities between the terrestrial carbon pools in the two systems, but impose contrasting degradation regimes in combination with the incubation results. For the LS-BKB, there was a strong relationship between the degradation rates and the three lignin phenol-based degradation proxies (r2 = 0.93-0.96, p < 0.01, linear regression) and two wax lipid-based degradation proxies (r2 = 0.71 and 0.66, p < 0.05, linear regression). In contrast, for the ESS-KPC system, there was no relationship between incubation-based degradation rates and molecular marker-based degradation status of TerrOM. A principal component analysis indicated that short-chain fatty acids and dicarboxylic acids from CuO oxidation are mainly of terrestrial origin in the LS-BKB, but mainly of marine origin in the ESS-KPC. Hence, the microbial degradation in the western (LS-BKB) system appears to be fueled by TerrOM whereas the eastern (ESS-KPC) system degradation appears to be driven by MarOM. By combining molecular fingerprinting of TerrOM degradation state with laboratory-based degradation studies on the same ESAS sediments, a picture evolves of two distinctly different modes of TerrOM degradation in different parts of the ESAS system. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Marine Chemistry  |o open access journal  |d 1972- 
463 |t Vol. 170  |v [ Р. 11-22]  |d 2015 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a изменения 
610 1 |a вечная мерзлота 
610 1 |a таяние 
610 1 |a органический углерод 
610 1 |a Сибирский арктический шельф 
610 1 |a океанография 
610 1 |a Восточная Арктика 
610 1 |a моря 
610 1 |a шельфы 
610 1 |a Северный Ледовитый океан 
610 1 |a климат 
610 1 |a лигнины 
701 1 |a Karlsson  |b E. S. 
701 1 |a Brüchert  |b V. 
701 1 |a Tesi  |b T. 
701 1 |a Charkin  |b A. 
701 1 |a Dudarev  |b O. V.  |c geologist  |c researcher of Tomsk Polytechnic University, candidate of geological and mineralogical Sciences  |f 1955-  |g Oleg Viktorovich  |3 (RuTPU)RU\TPU\pers\35379 
701 1 |a Semiletov  |b I. P.  |c geographer  |c Professor of Tomsk Polytechnic University, doctor of geographical Sciences  |f 1955-  |g Igor Petrovich  |3 (RuTPU)RU\TPU\pers\34220 
701 1 |a Gustafsson  |b Ö 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт природных ресурсов (ИПР)  |b Кафедра геологии и разведки полезных ископаемых (ГРПИ)  |b Международная научно-образовательная лаборатория изучения углерода арктических морей (МНОЛ ИУАМ)  |3 (RuTPU)RU\TPU\col\20711 
801 2 |a RU  |b 63413507  |c 20180220  |g RCR 
856 4 |u http://dx.doi.org/10.1016/j.marchem.2014.12.005 
942 |c CF