The effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension

Detalles Bibliográficos
Parent link:Materials and Design.— , 1978-
Vol. 117.— 2017.— [P. 371–381]
Autores Corporativos: Национальный исследовательский Томский политехнический университет (ТПУ) Институт физики высоких технологий (ИФВТ) Кафедра физики высоких технологий в машиностроении (ФВТМ), Национальный исследовательский Томский политехнический университет (ТПУ) Физико-технический институт (ФТИ) Кафедра общей физики (ОФ)
Otros Autores: Panin A. V. Alexey Viktorovich, Kazachenok M. S. Marina Sergeevna, Kozelskaya A. I. Anna Ivanovna, Balokhonov R. R. Ruslan Revovich, Romanova V. A. Varvara Aleksandrovna, Perevalova O. B. Olga Borisovna, Pochivalov Yu. I. Yury Ivanovich
Sumario:Title screen
The deformation behavior of commercially pure titanium specimens subjected to surface hardening by ultrasonic impact treatment followed by uniaxial tension was investigated experimentally and numerically. The microstructure of the ultrasonically treated ~ 100 ?m thick surface layer undergoing uniaxial tension was revealed, using transmission electron microscopy and electron backscatter diffraction. Non-equiaxed 100–200 nm ?-Ti grains composed of 2 nm diameter TiC and Ti2C nanoparticles, ?- and ??-phase crystallites were found in the 10 ?m thick uppermost layer. Fine and coarse ?-Ti grains containing dislocations and twins were observed at depths of 20 and 50 ?m below the specimen surface, respectively. A non-crystallographic deformation (shear banding) mechanism at work in the nanostructured surface layer of the specimens under study was revealed. The evolution of shear bands was studied by the finite difference method, with the fine-grained structure being explicitly accounted for in the calculations. Shear band self-organization was described, using the energy balance approach similar to that based on Griffith's energy balance criterion for brittle fracture. The tensile deformation of the hardened layer lying at a depth of 50 ?m was implemented by the glide of dislocations and growth of deformation twins induced by preliminary ultrasonic impact treatment.
Режим доступа: по договору с организацией-держателем ресурса
Lenguaje:inglés
Publicado: 2017
Materias:
Acceso en línea:http://dx.doi.org/10.1016/j.matdes.2017.01.006
Formato: Electrónico Capítulo de libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=653095

MARC

LEADER 00000naa0a2200000 4500
001 653095
005 20250829140729.0
035 |a (RuTPU)RU\TPU\network\18480 
090 |a 653095 
100 |a 20170207d2017 k||y0rusy50 ba 
101 0 |a eng 
102 |a FR 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a The effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension  |f A. V. Panin [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 36 tit.] 
330 |a The deformation behavior of commercially pure titanium specimens subjected to surface hardening by ultrasonic impact treatment followed by uniaxial tension was investigated experimentally and numerically. The microstructure of the ultrasonically treated ~ 100 ?m thick surface layer undergoing uniaxial tension was revealed, using transmission electron microscopy and electron backscatter diffraction. Non-equiaxed 100–200 nm ?-Ti grains composed of 2 nm diameter TiC and Ti2C nanoparticles, ?- and ??-phase crystallites were found in the 10 ?m thick uppermost layer. Fine and coarse ?-Ti grains containing dislocations and twins were observed at depths of 20 and 50 ?m below the specimen surface, respectively. A non-crystallographic deformation (shear banding) mechanism at work in the nanostructured surface layer of the specimens under study was revealed. The evolution of shear bands was studied by the finite difference method, with the fine-grained structure being explicitly accounted for in the calculations. Shear band self-organization was described, using the energy balance approach similar to that based on Griffith's energy balance criterion for brittle fracture. The tensile deformation of the hardened layer lying at a depth of 50 ?m was implemented by the glide of dislocations and growth of deformation twins induced by preliminary ultrasonic impact treatment. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Materials and Design  |d 1978- 
463 |t Vol. 117  |v [P. 371–381]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a титан 
610 1 |a ультразвуковая обработка 
610 1 |a градиент 
610 1 |a микроструктура 
701 1 |a Panin  |b A. V.  |c physicist  |c Professor of Tomsk Polytechnic University, doctor of physical and mathematical Sciences  |f 1971-  |g Alexey Viktorovich  |3 (RuTPU)RU\TPU\pers\34630  |9 17992 
701 1 |a Kazachenok  |b M. S.  |g Marina Sergeevna 
701 1 |a Kozelskaya  |b A. I.  |c physicist  |c Researcher at Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1985-  |g Anna Ivanovna  |3 (RuTPU)RU\TPU\pers\39663  |9 21044 
701 1 |a Balokhonov  |b R. R.  |c physicist  |c senior researcher at Tomsk Polytechnic University  |f 1972-  |g Ruslan Revovich  |3 (RuTPU)RU\TPU\pers\34538 
701 1 |a Romanova  |b V. A.  |c specialist in the field of materials science  |c senior researcher at Tomsk Polytechnic University  |f 1971-  |g Varvara Aleksandrovna  |3 (RuTPU)RU\TPU\pers\35065 
701 1 |a Perevalova  |b O. B.  |g Olga Borisovna 
701 1 |a Pochivalov  |b Yu. I.  |g Yury Ivanovich 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт физики высоких технологий (ИФВТ)  |b Кафедра физики высоких технологий в машиностроении (ФВТМ)  |3 (RuTPU)RU\TPU\col\18687 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Физико-технический институт (ФТИ)  |b Кафедра общей физики (ОФ)  |3 (RuTPU)RU\TPU\col\18734 
801 2 |a RU  |b 63413507  |c 20171018  |g RCR 
856 4 0 |u http://dx.doi.org/10.1016/j.matdes.2017.01.006 
942 |c CF