Magnetron sputtering with hot solid target: thermal processes and erosion

Detaylı Bibliyografya
Parent link:Acta Polytechnica: Journal of Advanced Engineering
Vol. 56, № 6.— 2016.— [P. 425-431]
Müşterek Yazar: Национальный исследовательский Томский политехнический университет (ТПУ) Физико-технический институт (ФТИ) Кафедра экспериментальной физики (ЭФ)
Diğer Yazarlar: Borduleva A. O. Alena Olegovna, Bleykher (Bleicher) G. A. Galina Alekseevna, Sidelev D. V. Dmitry Vladimirovich, Krivobokov V. P. Valery Pavlovich
Özet:Title screen
This work focuses on erosion and thermal processes taking place on the surface of the titanium target in magnetron sputtering. The study was carried out using magnetron sputtering systems (MSS) with different thermal insulation target types from the magnetron body. It was found that the presence of an evaporation component allows the rate of removal of atoms from the surface of a solid target to be increased with limited thermal conduction. A mathematical simulation was used to evaluate the contribution of evaporation to the increase in the coating deposition rate for complete and partial thermal insulation. It was found that non-uniformity of the direct-axis component of the magnetic induction vector helps to localize the heating. also increases the evaporation rate on the surface of the target. It was proved that local evaporation including sublimations on the surface of a hot target is a significant factor in increasing the coating deposition rate. Due to this mechanism, the coating deposition rate can be increased 5 times for Ti in comparison with fully cooled targets. This result can be applied for direct current magnetrons and also for pulsed systems. It was also found that evaporation increased the energy efficiency of the target erosion. The most suitable metals were selected for obtaining high-intensity emission of atoms from a solid target.
Dil:İngilizce
Baskı/Yayın Bilgisi: 2016
Konular:
Online Erişim:https://doi.org/10.14311/AP.2016.56.0425
Materyal Türü: Elektronik Kitap Bölümü
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=652943

MARC

LEADER 00000naa0a2200000 4500
001 652943
005 20260210071610.0
035 |a (RuTPU)RU\TPU\network\18314 
090 |a 652943 
100 |a 20170201d2016 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Magnetron sputtering with hot solid target: thermal processes and erosion  |f A. O. Borduleva [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a This work focuses on erosion and thermal processes taking place on the surface of the titanium target in magnetron sputtering. The study was carried out using magnetron sputtering systems (MSS) with different thermal insulation target types from the magnetron body. It was found that the presence of an evaporation component allows the rate of removal of atoms from the surface of a solid target to be increased with limited thermal conduction. A mathematical simulation was used to evaluate the contribution of evaporation to the increase in the coating deposition rate for complete and partial thermal insulation. It was found that non-uniformity of the direct-axis component of the magnetic induction vector helps to localize the heating. also increases the evaporation rate on the surface of the target. It was proved that local evaporation including sublimations on the surface of a hot target is a significant factor in increasing the coating deposition rate. Due to this mechanism, the coating deposition rate can be increased 5 times for Ti in comparison with fully cooled targets. This result can be applied for direct current magnetrons and also for pulsed systems. It was also found that evaporation increased the energy efficiency of the target erosion. The most suitable metals were selected for obtaining high-intensity emission of atoms from a solid target. 
461 |t Acta Polytechnica  |o Journal of Advanced Engineering 
463 |t Vol. 56, № 6  |v [P. 425-431]  |d 2016 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a магнетронное распыление 
610 1 |a мишени 
610 1 |a испарение 
610 1 |a скорости 
610 1 |a осаждение 
701 1 |a Borduleva  |b A. O.  |c specialist in the field of hydrogen energy  |c engineer of Tomsk Polytechnic University  |f 1992-  |g Alena Olegovna  |3 (RuTPU)RU\TPU\pers\36492 
701 1 |a Bleykher (Bleicher)  |b G. A.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences  |f 1961-  |g Galina Alekseevna  |3 (RuTPU)RU\TPU\pers\31496  |9 15657 
701 1 |a Sidelev  |b D. V.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1991-  |g Dmitry Vladimirovich  |y Tomsk  |3 (RuTPU)RU\TPU\pers\34524  |9 17905 
701 1 |a Krivobokov  |b V. P.  |c Russian physicist  |c professor of Tomsk Polytechnic University (TPU), Doctor of Physical and Mathematical Sciences (DSc)  |f 1948-  |g Valery Pavlovich  |3 (RuTPU)RU\TPU\pers\30416  |9 14757 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Физико-технический институт (ФТИ)  |b Кафедра экспериментальной физики (ЭФ)  |3 (RuTPU)RU\TPU\col\21255 
801 2 |a RU  |b 63413507  |c 20170201  |g RCR 
856 4 0 |u https://doi.org/10.14311/AP.2016.56.0425 
942 |c CF