Control of interpenetration via in situ lithium incorporation in MOFs and their gas adsorption properties and selectivity

Bibliographic Details
Parent link:CrystEngComm.— , 1999-
Vol. 18, iss. 39.— 2016.— [С. 7614-7619]
Main Author: Chaemchuem S. Somboon
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Институт природных ресурсов (ИПР) Кафедра технологии органических веществ и полимерных материалов (ТОВПМ)
Other Authors: Kui Z. Zhou, Verpoort F. V. K. Frensis Valter Kornelius
Summary:Title screen
Lithium incorporation in metal–organic frameworks during solvothermal synthesis demonstrates a significant modification of the structure chemistry and surface properties of MOFs towards the adsorption selectivity of gas mixtures (CO2 and CH4) at ambient conditions. Variation of the lithium loading (xLi-MOF-5) led to tunability of the interpenetration resulting in materials with substantial differences in their properties. The behavior of xLi-MOF-5 was evaluated via phase identification based on XRD, functional group coordination using FTIR and adsorption measurements applying N2, CO2 and CH4 gas adsorption/desorption analysis. These efforts give rise to a new strategy to tailor MOFs for high efficiency CO2 adsorption and separation.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2016
Subjects:
Online Access:http://dx.doi.org/10.1039/C6CE01522K
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=652437
Description
Summary:Title screen
Lithium incorporation in metal–organic frameworks during solvothermal synthesis demonstrates a significant modification of the structure chemistry and surface properties of MOFs towards the adsorption selectivity of gas mixtures (CO2 and CH4) at ambient conditions. Variation of the lithium loading (xLi-MOF-5) led to tunability of the interpenetration resulting in materials with substantial differences in their properties. The behavior of xLi-MOF-5 was evaluated via phase identification based on XRD, functional group coordination using FTIR and adsorption measurements applying N2, CO2 and CH4 gas adsorption/desorption analysis. These efforts give rise to a new strategy to tailor MOFs for high efficiency CO2 adsorption and separation.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1039/C6CE01522K