Structures and properties of alumina-based ceramic for reconstructive oncology
| Parent link: | AIP Conference Proceedings Vol. 1760 : Physics of Cancer: Interdisciplinary Problems and Clinical Applications 2016.— 2016.— [020022, 5 p.] |
|---|---|
| Egile nagusia: | |
| Egile korporatiboa: | , |
| Beste egile batzuk: | |
| Gaia: | Title screen The microstructure of alumina ceramics based on powders with a varying grain size has been investigated. Both commercial alumina powders and those fabricated by denitration of aluminum salts in high-frequency discharge plasma were used. It is shown that the variation of the sintering temperature and morphology of the initial powders of the particles leads to a change of the pore structure of ceramics from pore isolated clusters to a structure consisting of a ceramic skeleton and a large pore space. Changing the type of pore structure occurs at about 50% of porosity. The ceramic pore size distribution is bimodal. Dependencies final density vs initial density are linear; at the same time with increasing temperature, inclination of changes from positive to negative, indicating the change of sealing mechanisms. Extrapolation of these curves showed that they intersect with the values of density of about 2 g/m{3}, which indicates the possibility of producing non-shrink ceramics. It is shown that the strength increases with increasing nanocrystalline alumina content in powder mixture. A change in the character the pore structure is accompanied by a sharp decrease in strength, which corresponds to the percolation transition in ceramics. These results showed that it is possible to obtain ceramic materials with the structure and properties similar to natural bone. Режим доступа: по договору с организацией-держателем ресурса |
| Hizkuntza: | ingelesa |
| Argitaratua: |
2016
|
| Gaiak: | |
| Sarrera elektronikoa: | http://dx.doi.org/10.1063/1.4960241 http://earchive.tpu.ru/handle/11683/35775 |
| Formatua: | Baliabide elektronikoa Liburu kapitulua |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=651995 |
MARC
| LEADER | 00000nla2a2200000 4500 | ||
|---|---|---|---|
| 001 | 651995 | ||
| 005 | 20231101134709.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\17258 | ||
| 035 | |a RU\TPU\network\17256 | ||
| 090 | |a 651995 | ||
| 100 | |a 20161129a2016 k y0engy50 ba | ||
| 101 | 0 | |a eng | |
| 105 | |a y z 100zy | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Structures and properties of alumina-based ceramic for reconstructive oncology |f M. V. Grigoriev, S. N. Kulkov | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 10 tit.] | ||
| 330 | |a The microstructure of alumina ceramics based on powders with a varying grain size has been investigated. Both commercial alumina powders and those fabricated by denitration of aluminum salts in high-frequency discharge plasma were used. It is shown that the variation of the sintering temperature and morphology of the initial powders of the particles leads to a change of the pore structure of ceramics from pore isolated clusters to a structure consisting of a ceramic skeleton and a large pore space. Changing the type of pore structure occurs at about 50% of porosity. The ceramic pore size distribution is bimodal. Dependencies final density vs initial density are linear; at the same time with increasing temperature, inclination of changes from positive to negative, indicating the change of sealing mechanisms. Extrapolation of these curves showed that they intersect with the values of density of about 2 g/m{3}, which indicates the possibility of producing non-shrink ceramics. It is shown that the strength increases with increasing nanocrystalline alumina content in powder mixture. A change in the character the pore structure is accompanied by a sharp decrease in strength, which corresponds to the percolation transition in ceramics. These results showed that it is possible to obtain ceramic materials with the structure and properties similar to natural bone. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | 0 | |0 (RuTPU)RU\TPU\network\4816 |t AIP Conference Proceedings | |
| 463 | 0 | |0 (RuTPU)RU\TPU\network\17033 |t Vol. 1760 : Physics of Cancer: Interdisciplinary Problems and Clinical Applications 2016 |o Proceedings of the International conference, 22-25 March 2016, Tomsk, Russia |f National Research Tomsk Polytechnic University (TPU) ; eds. E. Y. Gutmanas ; O. B. Naimark ; Yu. P. Sharkeev |v [020022, 5 p.] |d 2016 | |
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a структура | |
| 610 | 1 | |a свойства | |
| 610 | 1 | |a керамика | |
| 610 | 1 | |a оксид алюминия | |
| 610 | 1 | |a реконструктивная хирургия | |
| 610 | 1 | |a керамические порошки | |
| 610 | 1 | |a спекание | |
| 610 | 1 | |a пористые структуры | |
| 700 | 1 | |a Grigoriev |b M. V. |c specialist in the field of materials science |c Associate Professor of Tomsk Polytechnic University, candidate of technical sciences |f 1984- |g Mikhail Vladimirovich |2 stltpush |3 (RuTPU)RU\TPU\pers\36452 | |
| 701 | 1 | |a Kulkov |b S. N. |c specialist in the field of material science |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences |f 1952- |g Sergey Nikolaevich |2 stltpush |3 (RuTPU)RU\TPU\pers\31428 | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Институт физики высоких технологий (ИФВТ) |b Кафедра материаловедения и технологии металлов (МТМ) |h 73 |2 stltpush |3 (RuTPU)RU\TPU\col\18689 |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Институт физики высоких технологий (ИФВТ) |b Кафедра материаловедения в машиностроении (ММС) |h 74 |2 stltpush |3 (RuTPU)RU\TPU\col\18688 |
| 801 | 2 | |a RU |b 63413507 |c 20170120 |g RCR | |
| 856 | 4 | |u http://dx.doi.org/10.1063/1.4960241 | |
| 856 | 4 | |u http://earchive.tpu.ru/handle/11683/35775 | |
| 942 | |c CF | ||