The fast neutron irradiation influence on the AlGaAs IR-LEDs reliability

التفاصيل البيبلوغرافية
Parent link:Microelectronics Reliability
Vol. 65.— 2016.— [P. 55-59]
مؤلف مشترك: Национальный исследовательский Томский политехнический университет Юргинский технологический институт (филиал) Кафедра безопасности жизнедеятельности, экологии и физического воспитания
مؤلفون آخرون: Gradoboev A. V. Aleksandr Vasilyevich, Orlova K. N. Kseniya Nikolaevna, Asanov I. A. Ivan Aleksandrovich, Simonova A. V. Anastasiya Vladimirovna
الملخص:Title screen
This paper represents the results of investigation of preliminary fast neutron irradiation influence on reliability of IR-LEDs manufactured on the basis of AlGaAs heterostructures. It is determined that design margin of LEDs is defined by catastrophic failures that are driven by mechanical destruction of LED packages rather than their lighting technology characteristics. The upper and lower limits of catastrophic failure probability are determined. In addition, the upper limit is shown to be dependent on the melt temperature of ohmic contact used to fix the chip to chip carrier. The preliminary fast neutron irradiation leads to the shift of defined temperature limits while the probability of catastrophic failure grows with neutron fluence that can be explained by lower radiation resistance of ohmic contact.
اللغة:الإنجليزية
منشور في: 2016
الموضوعات:
الوصول للمادة أونلاين:http://dx.doi.org/10.1016/j.microrel.2016.07.143
التنسيق: الكتروني فصل الكتاب
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=651544
الوصف
الملخص:Title screen
This paper represents the results of investigation of preliminary fast neutron irradiation influence on reliability of IR-LEDs manufactured on the basis of AlGaAs heterostructures. It is determined that design margin of LEDs is defined by catastrophic failures that are driven by mechanical destruction of LED packages rather than their lighting technology characteristics. The upper and lower limits of catastrophic failure probability are determined. In addition, the upper limit is shown to be dependent on the melt temperature of ohmic contact used to fix the chip to chip carrier. The preliminary fast neutron irradiation leads to the shift of defined temperature limits while the probability of catastrophic failure grows with neutron fluence that can be explained by lower radiation resistance of ohmic contact.
DOI:10.1016/j.microrel.2016.07.143