Rail strengthening in prolonged operation
| Parent link: | Steel in Translation.— , 1971- Vol. 46, iss. 6.— 2016.— [P. 405-409] |
|---|---|
| Autor corporatiu: | |
| Altres autors: | , , , , |
| Sumari: | Title screen In rail operation (with traffic corresponding to passed tonnage of gross loads of 500 and 1000 million t), the surface layer of the steel is significantly strengthened. Electron-microscope data permit quantitative analysis of the contribution of different mechanisms to rail strengthening in prolonged operation, at different distances from the contact surface. The strengthening is multifactorial: it involves substructural strengthening associated with nanofragment formation; dispersional strengthening by carbide particles; the formation of atmospheres at dislocations; and polar stress due to interphase and intraphase boundaries. The significant increase in the surface strength of rail steel after prolonged operation (passed tonnage of gross loads of 1000 million t) is due to the presence of long-range internal stress fields and to the fragmentation of material with the formation of nanostructure. Режим доступа: по договору с организацией-держателем ресурса |
| Idioma: | anglès |
| Publicat: |
2016
|
| Matèries: | |
| Accés en línia: | http://dx.doi.org/10.3103/S096709121606005X |
| Format: | Electrònic Capítol de llibre |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=650786 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 650786 | ||
| 005 | 20251124162001.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\16035 | ||
| 090 | |a 650786 | ||
| 100 | |a 20161020d2016 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Rail strengthening in prolonged operation |f V. E. Gromov [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 22 tit.] | ||
| 330 | |a In rail operation (with traffic corresponding to passed tonnage of gross loads of 500 and 1000 million t), the surface layer of the steel is significantly strengthened. Electron-microscope data permit quantitative analysis of the contribution of different mechanisms to rail strengthening in prolonged operation, at different distances from the contact surface. The strengthening is multifactorial: it involves substructural strengthening associated with nanofragment formation; dispersional strengthening by carbide particles; the formation of atmospheres at dislocations; and polar stress due to interphase and intraphase boundaries. The significant increase in the surface strength of rail steel after prolonged operation (passed tonnage of gross loads of 1000 million t) is due to the presence of long-range internal stress fields and to the fragmentation of material with the formation of nanostructure. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t Steel in Translation |d 1971- | ||
| 463 | |t Vol. 46, iss. 6 |v [P. 405-409] |d 2016 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a структуры | |
| 610 | 1 | |a операции | |
| 701 | 1 | |a Gromov |b V. E. |g Viktor Evgenjevich | |
| 701 | 1 | |a Ivanov |b Yu. F. |c physicist |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences |f 1955- |g Yuriy Fedorovich |3 (RuTPU)RU\TPU\pers\33559 |9 17226 | |
| 701 | 1 | |a Morozov |b K. V. |g Konstantin Viktorovich | |
| 701 | 1 | |a Peregudov |b O. A. |g Oleg A. | |
| 701 | 1 | |a Yurjev |b A. B. |g Aleksey Borisovich | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |c (2009- ) |9 26305 |
| 801 | 2 | |a RU |b 63413507 |c 20161227 |g RCR | |
| 856 | 4 | |u http://dx.doi.org/10.3103/S096709121606005X | |
| 942 | |c CF | ||