Rail strengthening in prolonged operation

Dades bibliogràfiques
Parent link:Steel in Translation.— , 1971-
Vol. 46, iss. 6.— 2016.— [P. 405-409]
Autor corporatiu: Национальный исследовательский Томский политехнический университет
Altres autors: Gromov V. E. Viktor Evgenjevich, Ivanov Yu. F. Yuriy Fedorovich, Morozov K. V. Konstantin Viktorovich, Peregudov O. A. Oleg A., Yurjev A. B. Aleksey Borisovich
Sumari:Title screen
In rail operation (with traffic corresponding to passed tonnage of gross loads of 500 and 1000 million t), the surface layer of the steel is significantly strengthened. Electron-microscope data permit quantitative analysis of the contribution of different mechanisms to rail strengthening in prolonged operation, at different distances from the contact surface. The strengthening is multifactorial: it involves substructural strengthening associated with nanofragment formation; dispersional strengthening by carbide particles; the formation of atmospheres at dislocations; and polar stress due to interphase and intraphase boundaries. The significant increase in the surface strength of rail steel after prolonged operation (passed tonnage of gross loads of 1000 million t) is due to the presence of long-range internal stress fields and to the fragmentation of material with the formation of nanostructure.
Режим доступа: по договору с организацией-держателем ресурса
Idioma:anglès
Publicat: 2016
Matèries:
Accés en línia:http://dx.doi.org/10.3103/S096709121606005X
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=650786

MARC

LEADER 00000naa0a2200000 4500
001 650786
005 20251124162001.0
035 |a (RuTPU)RU\TPU\network\16035 
090 |a 650786 
100 |a 20161020d2016 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Rail strengthening in prolonged operation  |f V. E. Gromov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 22 tit.] 
330 |a In rail operation (with traffic corresponding to passed tonnage of gross loads of 500 and 1000 million t), the surface layer of the steel is significantly strengthened. Electron-microscope data permit quantitative analysis of the contribution of different mechanisms to rail strengthening in prolonged operation, at different distances from the contact surface. The strengthening is multifactorial: it involves substructural strengthening associated with nanofragment formation; dispersional strengthening by carbide particles; the formation of atmospheres at dislocations; and polar stress due to interphase and intraphase boundaries. The significant increase in the surface strength of rail steel after prolonged operation (passed tonnage of gross loads of 1000 million t) is due to the presence of long-range internal stress fields and to the fragmentation of material with the formation of nanostructure. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Steel in Translation  |d 1971- 
463 |t Vol. 46, iss. 6  |v [P. 405-409]  |d 2016 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a структуры 
610 1 |a операции 
701 1 |a Gromov  |b V. E.  |g Viktor Evgenjevich 
701 1 |a Ivanov  |b Yu. F.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1955-  |g Yuriy Fedorovich  |3 (RuTPU)RU\TPU\pers\33559  |9 17226 
701 1 |a Morozov  |b K. V.  |g Konstantin Viktorovich 
701 1 |a Peregudov  |b O. A.  |g Oleg A. 
701 1 |a Yurjev  |b A. B.  |g Aleksey Borisovich 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |c (2009- )  |9 26305 
801 2 |a RU  |b 63413507  |c 20161227  |g RCR 
856 4 |u http://dx.doi.org/10.3103/S096709121606005X 
942 |c CF