Fourier Spectrums Clustering for Automated Facies Recognition of Field Y

Bibliographische Detailangaben
Parent link:Через интеграцию геонаук - к постижению гармонии недр: материалы 7-ой Международной геолого-геофизической конференции, Санкт-Петербург, 11-14 апреля, 2016 г.. [5 c.].— , 2016
Körperschaft: Национальный исследовательский Томский политехнический университет (ТПУ) Институт природных ресурсов (ИПР) Кафедра проектирования объектов нефтегазового комплекса (ПОНК)
Weitere Verfasser: Tengelidi D. I. Dmitry Ivanovich, Rukavishnikov V. S. Valery Sergeevich, Mityaev M. Y., Fuks O. M.
Zusammenfassung:Title screen
Facies determination is a key parameter for proper modelling of reservoir behaviour. The subject of current research is optimization of interpretation process and decreasing the subjectivity in facies determination through the automated process of facies recognition based on Fourier spectrums clustering of SP logs. Spectral method is based on decomposition of SP curves into Fourier series consisted of basis of periodic functions orthogonal on the interval. Main attributes for clustering are Fourier coefficients, energy, homogeneity degree and slope of spectral density. EM algorithm is applied for clustering including opportunity to estimate the probability of facies recognition. Advantages of method are combination of parameters, which responsible for curve shape as a combination of different scale heterogeneities correlatable in the interwell space. Also the results of clustering allows considering descriptive geology in the mathematical sense, which reduce the interpreter bias and make it possible to correlate the facies of different reservoirs with the same attributes. The automated facies recognition is applied in the Field Y which is situated in Western Siberia, accounts 1774 wells with SP log distributed in the 268 km2 area. Methodology proved itself as a reliable tool for facies recognition with probability of 84% for known facies of reservoir bs11c.
Режим доступа: по договору с организацией-держателем ресурса
Veröffentlicht: 2016
Schriftenreihe:Well Logging
Schlagworte:
Online-Zugang:http://dx.doi.org/10.3997/2214-4609.201600253
Format: Elektronisch Buchkapitel
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=650146

MARC

LEADER 00000naa0a2200000 4500
001 650146
005 20250904133733.0
035 |a (RuTPU)RU\TPU\network\15341 
090 |a 650146 
100 |a 20160915d2016 k||y0rusy50 ba 
101 0 |a rus 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Fourier Spectrums Clustering for Automated Facies Recognition of Field Y  |f D. I. Tengelidi [et al.] 
203 |a Текст  |c электронный 
225 1 |a Well Logging 
300 |a Title screen 
330 |a Facies determination is a key parameter for proper modelling of reservoir behaviour. The subject of current research is optimization of interpretation process and decreasing the subjectivity in facies determination through the automated process of facies recognition based on Fourier spectrums clustering of SP logs. Spectral method is based on decomposition of SP curves into Fourier series consisted of basis of periodic functions orthogonal on the interval. Main attributes for clustering are Fourier coefficients, energy, homogeneity degree and slope of spectral density. EM algorithm is applied for clustering including opportunity to estimate the probability of facies recognition. Advantages of method are combination of parameters, which responsible for curve shape as a combination of different scale heterogeneities correlatable in the interwell space. Also the results of clustering allows considering descriptive geology in the mathematical sense, which reduce the interpreter bias and make it possible to correlate the facies of different reservoirs with the same attributes. The automated facies recognition is applied in the Field Y which is situated in Western Siberia, accounts 1774 wells with SP log distributed in the 268 km2 area. Methodology proved itself as a reliable tool for facies recognition with probability of 84% for known facies of reservoir bs11c. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
463 |t Через интеграцию геонаук - к постижению гармонии недр  |o материалы 7-ой Международной геолого-геофизической конференции, Санкт-Петербург, 11-14 апреля, 2016 г.  |v [5 c.]  |d 2016 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Tengelidi  |b D. I.  |g Dmitry Ivanovich 
701 1 |a Rukavishnikov  |b V. S.  |c Director of the Center for Training and Retraining of Oil and Gas Specialists, Associate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences  |c Engineer of Tomsk Polytechnic University  |f 1984-  |g Valery Sergeevich  |3 (RuTPU)RU\TPU\pers\34050  |9 17614 
701 1 |a Mityaev  |b M. Y. 
701 1 |a Fuks  |b O. M. 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт природных ресурсов (ИПР)  |b Кафедра проектирования объектов нефтегазового комплекса (ПОНК)  |3 (RuTPU)RU\TPU\col\18669 
801 2 |a RU  |b 63413507  |c 20160915  |g RCR 
856 4 |u http://dx.doi.org/10.3997/2214-4609.201600253 
942 |c CF