Asymptotics semiclassically concentrated on curves for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation
| Parent link: | Journal of Physics A: Mathematical and Theoretical: Scientific Journal Vol. 49, № 30.— 2016.— [305203, 18 p.] |
|---|---|
| Autor principal: | |
| Autor corporatiu: | , |
| Altres autors: | , |
| Sumari: | Title screen In this paper we construct asymptotic solutions for the nonlocal multidimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation in the class of functions concentrated on a one-dimensional manifold (curve) using a semiclassical approximation technique. We show that the construction of these solutions can be reduced to solving a similar problem for the nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov in the class of functions concentrated at a point (zero-dimensional manifold) together with an additional operator condition. The general approach is exemplified by constructing a two-dimensional two-parametric solution, which describes quasi-steady-state patterns on a circumference. Режим доступа: по договору с организацией-держателем ресурса |
| Idioma: | anglès |
| Publicat: |
2016
|
| Matèries: | |
| Accés en línia: | http://dx.doi.org/10.1088/1751-8113/49/30/305203 |
| Format: | Electrònic Capítol de llibre |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=649966 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 649966 | ||
| 005 | 20250310114512.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\15136 | ||
| 090 | |a 649966 | ||
| 100 | |a 20160902d2016 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a US | ||
| 135 | |a drnn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Asymptotics semiclassically concentrated on curves for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation |f E. A. Levchenko, A. V. Shapovalov, A. Yu. Trifonov | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 31 tit.] | ||
| 330 | |a In this paper we construct asymptotic solutions for the nonlocal multidimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation in the class of functions concentrated on a one-dimensional manifold (curve) using a semiclassical approximation technique. We show that the construction of these solutions can be reduced to solving a similar problem for the nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov in the class of functions concentrated at a point (zero-dimensional manifold) together with an additional operator condition. The general approach is exemplified by constructing a two-dimensional two-parametric solution, which describes quasi-steady-state patterns on a circumference. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t Journal of Physics A: Mathematical and Theoretical |o Scientific Journal | ||
| 463 | |t Vol. 49, № 30 |v [305203, 18 p.] |d 2016 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a уравнение Фишера-Колмогорова-Петровского-Пискунова | |
| 610 | 1 | |a приближение | |
| 700 | 1 | |a Levchenko |b E. A. |c mathematician |c technician, Senior Lecturer of Tomsk Polytechnic University, candidate of physico-mathematical Sciences |f 1988- |g Evgeny Anatolievich |3 (RuTPU)RU\TPU\pers\31735 |9 15848 | |
| 701 | 1 | |a Shapovalov |b A. V. |c mathematician |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences |f 1949- |g Aleksandr Vasilyevich |3 (RuTPU)RU\TPU\pers\31734 |9 15847 | |
| 701 | 1 | |a Trifonov |b A. Yu. |c physicist, mathematician |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences |f 1963-2021 |g Andrey Yurievich |3 (RuTPU)RU\TPU\pers\30754 |9 15024 | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Физико-технический институт |b Кафедра высшей математики и математической физики |3 (RuTPU)RU\TPU\col\18727 |9 27176 |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Физико-технический институт |b Кафедра высшей математики и математической физики |b Международная лаборатория математической физики |3 (RuTPU)RU\TPU\col\21297 |9 27978 |
| 801 | 2 | |a RU |b 63413507 |c 20160902 |g RCR | |
| 856 | 4 | |u http://dx.doi.org/10.1088/1751-8113/49/30/305203 | |
| 942 | |c CF | ||