Determination of surface tension and contact angle by the axisymmetric bubble and droplet shape analysis

Podrobná bibliografie
Parent link:Thermophysics and Aeromechanics: Scientific Journal.— , 1994-
Vol. 22, iss. 3.— 2015.— [P. 297-303]
Korporace: Национальный исследовательский Томский политехнический университет Энергетический институт Кафедра автоматизации теплоэнергетических процессов, Национальный исследовательский Томский политехнический университет Энергетический институт Кафедра теоретической и промышленной теплотехники
Další autoři: Marchuk I. V., Cheverda V. V., Strizhak P. A. Pavel Alexandrovich, Kabov O. A. Oleg Aleksandrovich
Shrnutí:Title screen
The algorithms of solution to the Young–Laplace equation, describing the shape of an axisymmetric droplet on a flat horizontal surface, with various ways of setting the initial data and geometric parameters of a droplet, were derived and tested. Analysis of the Young–Laplace equation showed that a family of curves that form the droplet surface is the single-parametric one with the accuracy of up to the scale factor, whose role is played by the capillary length, and the contact angle determines the curve turn at a contact point, but it does not affect the shape of the curve. The main natural parameter defining the family of the forming curve is the curvature at the droplet top. The droplet shape is uniquely determined by three independent geometric parameters. This fact allows us to calculate the physical properties, such as the capillary length and contact angle, measuring three independent values: height, droplet diameter, and diameter of the droplet base or the area of the axial cross section of the droplet or its volume.
Режим доступа: по договору с организацией-держателем ресурса
Jazyk:angličtina
Vydáno: 2015
Témata:
On-line přístup:http://dx.doi.org/10.1134/S0869864315030038
Médium: Elektronický zdroj Kapitola
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=649437

MARC

LEADER 00000naa0a2200000 4500
001 649437
005 20250305132523.0
035 |a (RuTPU)RU\TPU\network\14599 
035 |a RU\TPU\network\8934 
090 |a 649437 
100 |a 20160713d2015 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drnn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Determination of surface tension and contact angle by the axisymmetric bubble and droplet shape analysis  |f I. V. Marchuk [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 303 (11 tit.)] 
330 |a The algorithms of solution to the Young–Laplace equation, describing the shape of an axisymmetric droplet on a flat horizontal surface, with various ways of setting the initial data and geometric parameters of a droplet, were derived and tested. Analysis of the Young–Laplace equation showed that a family of curves that form the droplet surface is the single-parametric one with the accuracy of up to the scale factor, whose role is played by the capillary length, and the contact angle determines the curve turn at a contact point, but it does not affect the shape of the curve. The main natural parameter defining the family of the forming curve is the curvature at the droplet top. The droplet shape is uniquely determined by three independent geometric parameters. This fact allows us to calculate the physical properties, such as the capillary length and contact angle, measuring three independent values: height, droplet diameter, and diameter of the droplet base or the area of the axial cross section of the droplet or its volume. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Thermophysics and Aeromechanics  |o Scientific Journal  |d 1994- 
463 |t Vol. 22, iss. 3  |v [P. 297-303]  |d 2015 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a капли 
610 1 |a поверхностное натяжение 
610 1 |a поверхностная тензометрия 
610 1 |a уравнение Янга-Лапласа 
610 1 |a угол контакта 
701 1 |a Marchuk  |b I. V. 
701 1 |a Cheverda  |b V. V. 
701 1 |a Strizhak  |b P. A.  |c Specialist in the field of heat power energy  |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1985-  |g Pavel Alexandrovich  |3 (RuTPU)RU\TPU\pers\30871  |9 15117 
701 1 |a Kabov  |b O. A.  |c specialist in the field of thermal engineering  |c Professor of Tomsk Polytechnic University, doctor of physical and mathematical Sciences  |f 1956-  |g Oleg Aleksandrovich  |3 (RuTPU)RU\TPU\pers\35151  |9 18418 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Энергетический институт  |b Кафедра автоматизации теплоэнергетических процессов  |3 (RuTPU)RU\TPU\col\18678  |9 27131 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Энергетический институт  |b Кафедра теоретической и промышленной теплотехники  |3 (RuTPU)RU\TPU\col\18679  |9 27132 
801 2 |a RU  |b 63413507  |c 20160713  |g RCR 
856 4 |u http://dx.doi.org/10.1134/S0869864315030038 
942 |c CF