Sintering of zirconia ceramics by intense high-energy electron beam
| Parent link: | Ceramics International.— , 1981- Vol. 42, iss. 12.— 2016.— [P. 13888–13892] |
|---|---|
| Autores Corporativos: | Национальный исследовательский Томский политехнический университет Институт неразрушающего контроля Проблемная научно-исследовательская лаборатория электроники, диэлектриков и полупроводников, Национальный исследовательский Томский политехнический университет Институт неразрушающего контроля Кафедра физических методов и приборов контроля качества |
| Otros Autores: | Surzhikov A. P. Anatoly Petrovich, Frangulyan (Franguljyan) Т. S. Tamara Semenovna, Gyngazov (Ghyngazov) S. A. Sergey Anatolievich, Vasiljev I. P. Ivan Petrovich, Chernyavski (Chernyavskiy) A. V. Aleksandr Viktorovich |
| Sumario: | Title screen A comparative analysis of the efficiency of zirconia ceramics sintering by thermal method and high-energy electron beam sintering was performed for compacts prepared from commercial TZ-3Y-E grade powder. The electron energy was 1.4. MeV. The samples were sintered in the temperature range of 1200-1400. °C. Sintering of zirconia ceramics by high-energy accelerated electron beam is shown to reduce the firing temperature by about 200. °C compared to that in conventional heating technique. Ceramics sintered by accelerated electron beam at 1200. °C is of high density, microhardness and smaller grain size compared to that produced by thermal firing at 1400. °C. Electron beam sintering at higher temperature causes deterioration of ceramics properties due to radiation-induced acceleration of high-temperature recrystallization at higher temperatures. Режим доступа: по договору с организацией-держателем ресурса |
| Lenguaje: | inglés |
| Publicado: |
2016
|
| Materias: | |
| Acceso en línea: | http://dx.doi.org/10.1016/j.ceramint.2016.05.198 |
| Formato: | Electrónico Capítulo de libro |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=649255 |
Ejemplares similares
Two-Step Sintering of Zirconia Ceramics by Intense High-Energy Electron Beam
Publicado: (2019)
Publicado: (2019)
Zirconia ceramics processing by intense electron and ion beams
por: Gyngazov (Ghyngazov) S. A. Sergey Anatolievich
Publicado: (2018)
por: Gyngazov (Ghyngazov) S. A. Sergey Anatolievich
Publicado: (2018)
Sintering of oxide and carbide ceramics by electron beam at forevacuum pressure
Publicado: (2016)
Publicado: (2016)
Electron Beam Sintering of Ceramics
Publicado: (2014)
Publicado: (2014)
Electron beam sintering of ceramics for additive manufacturing
Publicado: (2019)
Publicado: (2019)
The possibilities of dimensional electron-beam processing as applied to selective sintering of oxide ceramics in the forevacuum pressure range
Publicado: (2018)
Publicado: (2018)
Multilevel Hierarchical Structure Formed in the Film (Ti)/Substrate (SiC-Ceramics) System under Irradiation by an Intense Pulsed Electron Beam
Publicado: (2018)
Publicado: (2018)
Effect of additives on sintering of zirconia ceramics
por: Gyngazov (Ghyngazov) S. A. Sergey Anatolievich
Publicado: (2018)
por: Gyngazov (Ghyngazov) S. A. Sergey Anatolievich
Publicado: (2018)
Ceramics based on titanium nitride and silicon nitride sintered by SPS-method
por: Sivkov A. A. Aleksandr Anatolyevich
Publicado: (2015)
por: Sivkov A. A. Aleksandr Anatolyevich
Publicado: (2015)
Sintering of zirconia ceramics using microwave and spark heating techniques
Publicado: (2016)
Publicado: (2016)
Invesigation of SiC ceramics, modified by intense electron beam
Publicado: (2016)
Publicado: (2016)
Spark plasma sintering of transparent YAG:Ce ceramics with LiF flux
Publicado: (2021)
Publicado: (2021)
The Energy Stored in the Aluminum Nanopowder Irradiated by Electron Beam
Publicado: (2016)
Publicado: (2016)
Electron microscopy study of alumina ceramics Irradiated with a low-energy high-current electron beam
por: Gyngazov S. A. Sergey Anatolievich
Publicado: (2021)
por: Gyngazov S. A. Sergey Anatolievich
Publicado: (2021)
The Analysis of the Mechanisms for Plasticization of Boron Carbide Ceramics Irradiated by an Intense Electron Beam
Publicado: (2016)
Publicado: (2016)
Sintering of composite powder on the substrate, controlled by electronic beam
por: Kryukova O. N. Olga Nikolaevna
Publicado: (2017)
por: Kryukova O. N. Olga Nikolaevna
Publicado: (2017)
Surface Modification of ZrO[2] -3Y[2]O[3] Ceramics with High-Intensity Pulsed N{2+} Ion Beams
Publicado: (2019)
Publicado: (2019)
Modification of Ferrite Ceramics Properties by Intensive Pulsed Beam of Low-Energy Electrons
Publicado: (2004)
Publicado: (2004)
Changes of 3d-Printed Plastic Samples Mechanical Properties Caused by 6 MeV Electron Beam Irradiation
Publicado: (2019)
Publicado: (2019)
Structural Phase Transformations of the Surface Layer of SiC Ceramics Irradiated by Intense Electron Beam
Publicado: (2016)
Publicado: (2016)
Effect of the number of passes of the electron beam on the structural and phase state of coatings based on high-speed tool steel
por: Gnyusov S. F. Sergey Fedorovich
Publicado: (2013)
por: Gnyusov S. F. Sergey Fedorovich
Publicado: (2013)
The Structure and Properties of Yttrium-Stabilized Zirconium Dioxide Ceramics Treated by Electron Beam
Publicado: (2016)
Publicado: (2016)
Effect of High Intensity Pulsed Ion Beam of Carbon on Subsurface Layers of Zirconia Ceramics
Publicado: (2015)
Publicado: (2015)
Structure and Properties of the Surface Layer of B4C Ceramic Treated with an Intense Electron Beam
Publicado: (2018)
Publicado: (2018)
Solid-Phase Formation of Li-Zn Ferrite under High-Energy Impact
por: Nikolaev E. V. Evgeny Vladimirovich
Publicado: (2019)
por: Nikolaev E. V. Evgeny Vladimirovich
Publicado: (2019)
Irradiation by a low-energy pulsed electron beam of zirconia-based composite
Publicado: (2019)
Publicado: (2019)
About the possibility selective electron-beam sintering of ceramic powders in the forevacuum pressure range
Publicado: (2016)
Publicado: (2016)
Manufacturing Optically Transparent Thick Zirconia Ceramics by Spark Plasma Sintering with the Use of Collector Pressing
Publicado: (2021)
Publicado: (2021)
Еlectron microscopy studies of near-surface layers of ZRO2(Y)-AL2O3 composite ceramic modified by high-current beam of low-energy electrons
Publicado: (2014)
Publicado: (2014)
Obtaining Ceramic Based on Si3N4 and TiN by Spark Plasma Sintering
por: Evdokimov A. A. Andrey Anatolievich
Publicado: (2016)
por: Evdokimov A. A. Andrey Anatolievich
Publicado: (2016)
Energy depth distribution of pulsed electron beam of wide electron kinetic energy spectrum for an aluminum target
Publicado: (2019)
Publicado: (2019)
Modification of the WC-Co carbide surface with high-intensity pulsed ion beam
Publicado: (2020)
Publicado: (2020)
Formation of Pore Structure in Zirconia-Alumina Ceramics
Publicado: (2018)
Publicado: (2018)
Luminescent Yttrium–Aluminum Garnet Ceramics Obtained by Conventional Sintering on Air
Publicado: (2019)
Publicado: (2019)
Specific features of the charge neutralization of silicon carbide in sintering by electron beam in the forevacuum range of pressures
Publicado: (2015)
Publicado: (2015)
The Criteria for Optimization of Spark Plasma Sintering of Transparent MgAl2O4 Ceramics
Publicado: (2018)
Publicado: (2018)
Optical absorption of BaF[2] crystals with different prehistory when irradiated by high-energy electrons
Publicado: (2016)
Publicado: (2016)
Activated sintering of ceramics on the basis of Al[2]O[3]
Publicado: (2015)
Publicado: (2015)
Research of Energy Density for Pulsed Electron Beam of Wide Electron Kinetic Energy Spectrum
Publicado: (2018)
Publicado: (2018)
Electromigration in lithium-titanium ferrite ceramics sintered in radiation-thermal mode
Publicado: (2021)
Publicado: (2021)
Ejemplares similares
-
Two-Step Sintering of Zirconia Ceramics by Intense High-Energy Electron Beam
Publicado: (2019) -
Zirconia ceramics processing by intense electron and ion beams
por: Gyngazov (Ghyngazov) S. A. Sergey Anatolievich
Publicado: (2018) -
Sintering of oxide and carbide ceramics by electron beam at forevacuum pressure
Publicado: (2016) -
Electron Beam Sintering of Ceramics
Publicado: (2014) -
Electron beam sintering of ceramics for additive manufacturing
Publicado: (2019)