Distribution of contact loads over the flank-land of the cutter with a rounded cutting edge

Bibliographic Details
Parent link:IOP Conference Series: Materials Science and Engineering
Vol. 124 : Mechanical Engineering, Automation and Control Systems (MEACS2015).— 2016.— [012173, 7 p.]
Main Author: Kozlov V. N. Victor Nikolayevich
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Институт кибернетики (ИК) Кафедра технологии автоматизированного машиностроительного производства (ТАМП)
Other Authors: Gerasimov A., Kim A. B. Aleksey Bogovich
Summary:Title screen
In this paper, contact conditions between a tool and a workpiece material for wear-simulating turning by a cutter with a sharp-cornered edge and with a rounded cutting edge are analysed. The results of the experimental study of specific contact load distribution over the artificial flank wear-land of the cutter in free orthogonal turning of the disk from titanium alloy (Ti[6]Al[2]Mo[2]Cr), ductile (63Cu) and brittle (57Cu1Al[3]Mn) brasses are described. Investigations were carried out by the method of 'split cutter' and by the method of the artificial flank-land of variable width. The experiments with a variable feed rate and a cutting speed show that in titanium alloy machining with a sharp-cornered cutting edge the highest normal contact load ([sigma][h max]=3400...2200 MPa) is observed immediately at the cutting edge, and the curve has a horizontal region with the length of 0.2... 0.6 mm. At a distance from the cutting edge, the value of specific normal contact load is dramatically reduced to 1100...500 MPa. The character of normal contact load for a rounded cutting edge is different -it is uniform, and its value is approximately 2 times smaller compared to machining with a sharp-cornered cutting edge. In author's opinion it is connected with generation of a seizure zone in a chip formation region and explains the capacity of highly worn-out cutting tools for titanium alloys machining. The paper analyses the distribution of tangential contact loads over the flank land, which pattern differs considerably for machining with a sharp-cornered edge and with a rounded cutting edge
Published: 2016
Series:Mechanical Engineering Processes and Metal Treatment
Subjects:
Online Access:http://dx.doi.org/10.1088/1757-899X/124/1/012173
http://earchive.tpu.ru/handle/11683/33902
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=648639
Description
Summary:Title screen
In this paper, contact conditions between a tool and a workpiece material for wear-simulating turning by a cutter with a sharp-cornered edge and with a rounded cutting edge are analysed. The results of the experimental study of specific contact load distribution over the artificial flank wear-land of the cutter in free orthogonal turning of the disk from titanium alloy (Ti[6]Al[2]Mo[2]Cr), ductile (63Cu) and brittle (57Cu1Al[3]Mn) brasses are described. Investigations were carried out by the method of 'split cutter' and by the method of the artificial flank-land of variable width. The experiments with a variable feed rate and a cutting speed show that in titanium alloy machining with a sharp-cornered cutting edge the highest normal contact load ([sigma][h max]=3400...2200 MPa) is observed immediately at the cutting edge, and the curve has a horizontal region with the length of 0.2... 0.6 mm. At a distance from the cutting edge, the value of specific normal contact load is dramatically reduced to 1100...500 MPa. The character of normal contact load for a rounded cutting edge is different -it is uniform, and its value is approximately 2 times smaller compared to machining with a sharp-cornered cutting edge. In author's opinion it is connected with generation of a seizure zone in a chip formation region and explains the capacity of highly worn-out cutting tools for titanium alloys machining. The paper analyses the distribution of tangential contact loads over the flank land, which pattern differs considerably for machining with a sharp-cornered edge and with a rounded cutting edge
DOI:10.1088/1757-899X/124/1/012173