Modification of the sample's surface of hypereutectic silumin by pulsed electron beam
| Parent link: | IOP Conference Series: Materials Science and Engineering Vol. 124 : Mechanical Engineering, Automation and Control Systems (MEACS2015).— 2016.— [012138, 5 p.] |
|---|---|
| Yhteisötekijä: | |
| Muut tekijät: | , , , , , , , |
| Yhteenveto: | Title screen The article presents the results of the analysis of the elemental and phase composition, defect substructures. It demonstrates strength and tribological characteristics of the aluminium-silicon alloy of the hypereutectic composition in the cast state and after irradiation with a high-intensity pulsed electron beam of a submillisecond exposure duration (a Solo installation, Institute of High Current Electrons of the Siberian Branch of the Russian Academy of Sciences). The research has been conducted using optical and scanning electron microscopy, and the X-ray phase analysis. Mechanical properties have been characterized by microhardness, tribological properties - by wear resistance and the friction coefficient value. Irradiation of silumin with the high-intensity pulsed electron beam has led to the modification of the surface layer up to 1000 microns thick. The surface layer with the thickness of up to 100 microns is characterized by melting of all phases present in the alloy; subsequent highspeed crystallization leads to the formation of a submicro- and nanocrystalline structure in this layer. The hardness of the modified layer decreases with the increasing distance from the surface exposure. The hardness of the surface layer is more than twice the hardness of cast silumin. Durability of silumin treated with a high intensity electron beam is ≈ 1, 2 times as much as the wear resistance of the cast material. |
| Kieli: | englanti |
| Julkaistu: |
2016
|
| Sarja: | Materials Science in Mechanical Engineering |
| Aiheet: | |
| Linkit: | http://dx.doi.org/10.1088/1757-899X/124/1/012138 http://earchive.tpu.ru/handle/11683/33890 |
| Aineistotyyppi: | Elektroninen Kirjan osa |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=648612 |
MARC
| LEADER | 00000nla2a2200000 4500 | ||
|---|---|---|---|
| 001 | 648612 | ||
| 005 | 20251126133923.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\13771 | ||
| 035 | |a RU\TPU\network\13768 | ||
| 090 | |a 648612 | ||
| 100 | |a 20160526a2016 k y0engy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a GB | ||
| 105 | |a y z 100zy | ||
| 135 | |a drgn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Modification of the sample's surface of hypereutectic silumin by pulsed electron beam |f M. E. Rygina [et al.] | |
| 203 | |a Text |c electronic | ||
| 225 | 1 | |a Materials Science in Mechanical Engineering | |
| 300 | |a Title screen | ||
| 320 | |a [References: 10 tit.] | ||
| 330 | |a The article presents the results of the analysis of the elemental and phase composition, defect substructures. It demonstrates strength and tribological characteristics of the aluminium-silicon alloy of the hypereutectic composition in the cast state and after irradiation with a high-intensity pulsed electron beam of a submillisecond exposure duration (a Solo installation, Institute of High Current Electrons of the Siberian Branch of the Russian Academy of Sciences). The research has been conducted using optical and scanning electron microscopy, and the X-ray phase analysis. Mechanical properties have been characterized by microhardness, tribological properties - by wear resistance and the friction coefficient value. Irradiation of silumin with the high-intensity pulsed electron beam has led to the modification of the surface layer up to 1000 microns thick. The surface layer with the thickness of up to 100 microns is characterized by melting of all phases present in the alloy; subsequent highspeed crystallization leads to the formation of a submicro- and nanocrystalline structure in this layer. The hardness of the modified layer decreases with the increasing distance from the surface exposure. The hardness of the surface layer is more than twice the hardness of cast silumin. Durability of silumin treated with a high intensity electron beam is ≈ 1, 2 times as much as the wear resistance of the cast material. | ||
| 461 | 0 | |0 (RuTPU)RU\TPU\network\2008 |t IOP Conference Series: Materials Science and Engineering | |
| 463 | 0 | |0 (RuTPU)RU\TPU\network\13617 |t Vol. 124 : Mechanical Engineering, Automation and Control Systems (MEACS2015) |o International Conference, 1–4 December 2015, Tomsk, Russia |o [proceedings] |v [012138, 5 p.] |d 2016 | |
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a модификации | |
| 610 | 1 | |a поверхности | |
| 610 | 1 | |a силумины | |
| 610 | 1 | |a электронные пучки | |
| 610 | 1 | |a элементный состав | |
| 610 | 1 | |a фазовый состав | |
| 610 | 1 | |a трибологические характеристики | |
| 610 | 1 | |a заэвтектические силумины | |
| 610 | 1 | |a импульсные пучки | |
| 610 | 1 | |a микротвердость | |
| 610 | 1 | |a сканирующая электронная микроскопия | |
| 701 | 1 | |a Rygina |b M. E. | |
| 701 | 1 | |a Ivanov |b Yu. F. |c physicist |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences |f 1955- |g Yuriy Fedorovich |3 (RuTPU)RU\TPU\pers\33559 | |
| 701 | 1 | |a Lasconev |b A. P. | |
| 701 | 1 | |a Teresov |b A. D. | |
| 701 | 1 | |a Cherenda |b N. N. |c Physicist |c Senior researcher of Tomsk Polytechnic University, Candidate of physical and mathematical sciences |f 1970- |g Nikolay Nikolaevich |3 (RuTPU)RU\TPU\pers\36741 | |
| 701 | 1 | |a Uglov |b V. V. |c Physicist |c Leading researcher of Tomsk Polytechnic University, Doctor of physical and mathematical sciences |f 1954- |g Vladimir Vasilievich |3 (RuTPU)RU\TPU\pers\36737 | |
| 701 | 1 | |a Petricova |b E. A. | |
| 701 | 1 | |a Astashinskay |b M. V. | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |c (2009- ) |9 26305 |
| 801 | 2 | |a RU |b 63413507 |c 20191212 |g RCR | |
| 856 | 4 | |u http://dx.doi.org/10.1088/1757-899X/124/1/012138 | |
| 856 | 4 | |u http://earchive.tpu.ru/handle/11683/33890 | |
| 942 | |c CF | ||