Deuterium z-pinch as a powerful source of multi-MeV ions and neutrons for advanced applications

Bibliographic Details
Parent link:Physics of Plasmas.— , 1969-
Vol. 23, iss. 3.— 2016.— [032702, 10 р.]
Corporate Author: Национальный исследовательский Томский политехнический университет Физико-технический институт Лаборатория № 33 ядерного реактора
Other Authors: Klir D., Shishlov A. V. Aleksandr Viktorovich, Kubes P., Labetsky A. Yu., Rezac K., Cherdizov R. K. Rustam Koshalievich, Cikhardt J. Jakub, Cikhardtova B., Dudkin G. N. Gennadiy Nikolaevich, Fursov F. I. Fedor Ivanovich, Garapatski A. A. Alexander Alexandrovich, Kovalchuk B. M. Boris Mikhailovich, Krasa J., Kravarik J., Kurmaev N. E. Nikolay Evgenjevich, Orcikova H., Padalko V. N. Vladimir Nikolaevich, Ratakhin N. A. Nikolay Aleksandrovich, Sila O., Turek K., Varlachev V. A. Valery Aleksandrovich, Velyhan A., Wagner R.
Summary:Title screen
A novel configuration of a deuterium z-pinch has been used to generate a nanosecond pulse of fast ions and neutrons. At a 3 MA current, the peak neutron yield of (3.6 ± 0.5) × 1012 was emitted within 20 ns implying the production rate of 1020 neutrons/s. High neutron yields resulted from the magnetization of MeV deuterons inside plasmas. Whereas deuterons were trapped in the radial direction, a lot of fast ions escaped the z-pinch along the z-axis. A large number of >25 MeV ions were emitted into a 250 mrad cone. The cut-off energy of broad energy spectra of hydrogen ions approached 40 MeV. The total number of >1 MeV and >25 MeV deuterons were 1016 and 1013, respectively. Utilizing these ions offers a real possibility of various applications, including the increase of neutron yields or the production of short-livedisotopes in samples placed in ion paths. On the basis of our experiments with various samples, we concluded that a single shot would have been sufficient to obtain GBq positron activity of 13N isotopes via the 12C(d,n)13N reaction. Furthermore, the first z-pinch generated neutronradiograph produced by ≈20 ns pulses is presented in this paper.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2016
Subjects:
Online Access:http://dx.doi.org/10.1063/1.4942944
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=648214
Description
Summary:Title screen
A novel configuration of a deuterium z-pinch has been used to generate a nanosecond pulse of fast ions and neutrons. At a 3 MA current, the peak neutron yield of (3.6 ± 0.5) × 1012 was emitted within 20 ns implying the production rate of 1020 neutrons/s. High neutron yields resulted from the magnetization of MeV deuterons inside plasmas. Whereas deuterons were trapped in the radial direction, a lot of fast ions escaped the z-pinch along the z-axis. A large number of >25 MeV ions were emitted into a 250 mrad cone. The cut-off energy of broad energy spectra of hydrogen ions approached 40 MeV. The total number of >1 MeV and >25 MeV deuterons were 1016 and 1013, respectively. Utilizing these ions offers a real possibility of various applications, including the increase of neutron yields or the production of short-livedisotopes in samples placed in ion paths. On the basis of our experiments with various samples, we concluded that a single shot would have been sufficient to obtain GBq positron activity of 13N isotopes via the 12C(d,n)13N reaction. Furthermore, the first z-pinch generated neutronradiograph produced by ≈20 ns pulses is presented in this paper.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1063/1.4942944