Numerical Simulation of Water and Water Emulsion Droplets Evaporation in Flames with Different Temperatures

Dades bibliogràfiques
Parent link:4th International Conference on Particle-Based Methods, Fundamentals and Applications: PARTICLES 2015: Proceedings of the IV International Conference, Barcelona, Spain 28 - 30 September 2015. [P. 991-997].— , 2015
Autor principal: Strizhak P. A. Pavel Alexandrovich
Autor corporatiu: Национальный исследовательский Томский политехнический университет (ТПУ) Энергетический институт (ЭНИН) Кафедра автоматизации теплоэнергетических процессов (АТП)
Altres autors: Volkov R. S. Roman Sergeevich, Zhdanova A. O. Alena Olegovna
Sumari:Title screen
The models of heat and mass transfer and phase transition for “water droplet - flame” system have been developed using non-stationary nonlinear partial differential equations. The system of differential equations was solved by the finite-difference method. The locally one-dimensional method was used to solve the difference analogous of differential equations. One-dimensional differential equations were solved using an implicit four-point difference scheme. Nonlinear equations were solved by the iteration method. The evaporation rates of water droplets (with sizes from 0.05 mm to 5 mm) in the flame zone (at the temperatures from 500 K to 1200 K) were determined. Theoretical analysis established essentially nonlinear (close to exponential) form of dependence of the water droplet evaporation rate on the temperature of the external gas area and the temperature of a droplet surface. In particular, the water droplet evaporation rate varies from 0.25 to 0.29 kg/(m2 s), when the temperature of external gas area is about 1100 K. On the other hand, the water droplet evaporation rate does not exceed 0.01 kg/(m2 s) when the temperature of external gas area is about 350 K. Besides, it has been found out that droplets warm up at different rates depending on their initial temperature and velocity. As a result, the integral characteristics of droplet evaporation can increase substantially, when droplets move through the external gas area at the same temperature. We performed a similar investigation or droplet streams with droplet concentration 0.001-0.005 m3 in 1 m3 of gas area (typical parameters for modern spray extinguishing systems).
Режим доступа: по договору с организацией-держателем ресурса
Idioma:anglès
Publicat: 2015
Matèries:
Accés en línia:http://congress.cimne.com/particles2015/frontal/doc/E-book_PARTICLES_2015.pdf#page=991
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=648203

MARC

LEADER 00000naa0a2200000 4500
001 648203
005 20250908093034.0
035 |a (RuTPU)RU\TPU\network\13360 
035 |a RU\TPU\network\13297 
090 |a 648203 
100 |a 20160513d2015 k y0rusy50 ba 
101 0 |a eng 
102 |a ES 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Numerical Simulation of Water and Water Emulsion Droplets Evaporation in Flames with Different Temperatures  |f P. A. Strizhak, R. S. Volkov, A. O. Zhdanova 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 997 (12 tit.)] 
330 |a The models of heat and mass transfer and phase transition for “water droplet - flame” system have been developed using non-stationary nonlinear partial differential equations. The system of differential equations was solved by the finite-difference method. The locally one-dimensional method was used to solve the difference analogous of differential equations. One-dimensional differential equations were solved using an implicit four-point difference scheme. Nonlinear equations were solved by the iteration method. The evaporation rates of water droplets (with sizes from 0.05 mm to 5 mm) in the flame zone (at the temperatures from 500 K to 1200 K) were determined. Theoretical analysis established essentially nonlinear (close to exponential) form of dependence of the water droplet evaporation rate on the temperature of the external gas area and the temperature of a droplet surface. In particular, the water droplet evaporation rate varies from 0.25 to 0.29 kg/(m2 s), when the temperature of external gas area is about 1100 K. On the other hand, the water droplet evaporation rate does not exceed 0.01 kg/(m2 s) when the temperature of external gas area is about 350 K. Besides, it has been found out that droplets warm up at different rates depending on their initial temperature and velocity. As a result, the integral characteristics of droplet evaporation can increase substantially, when droplets move through the external gas area at the same temperature. We performed a similar investigation or droplet streams with droplet concentration 0.001-0.005 m3 in 1 m3 of gas area (typical parameters for modern spray extinguishing systems). 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
463 |t 4th International Conference on Particle-Based Methods, Fundamentals and Applications: PARTICLES 2015  |o Proceedings of the IV International Conference, Barcelona, Spain 28 - 30 September 2015  |v [P. 991-997]  |d 2015 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
700 1 |a Strizhak  |b P. A.  |c Specialist in the field of heat power energy  |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1985-  |g Pavel Alexandrovich  |3 (RuTPU)RU\TPU\pers\30871  |9 15117 
701 1 |a Volkov  |b R. S.  |c specialist in the field of power engineering  |c Associate Professor of the Tomsk Polytechnic University, candidate of technical Sciences  |f 1987-  |g Roman Sergeevich  |3 (RuTPU)RU\TPU\pers\33926  |9 17499 
701 1 |a Zhdanova  |b A. O.  |c specialist in the field of power engineering  |c engineer of Tomsk Polytechnic University  |f 1989-  |g Alena Olegovna  |3 (RuTPU)RU\TPU\pers\34528  |9 17909 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Энергетический институт (ЭНИН)  |b Кафедра автоматизации теплоэнергетических процессов (АТП)  |3 (RuTPU)RU\TPU\col\18678 
801 2 |a RU  |b 63413507  |c 20160513  |g RCR 
856 4 |u http://congress.cimne.com/particles2015/frontal/doc/E-book_PARTICLES_2015.pdf#page=991 
942 |c CF