Spark Plasma Sintering of Aluminum-Magnesium-Matrix Composites with Boron Carbide and Tungsten Nano-powder Inclusions: Modeling and Experimentation
| Parent link: | The Journal of The Minerals, Metals & Materials Society: Scientific Journal Vol. 68, iss. 3.— 2016.— [P. 908-919] |
|---|---|
| Ente Autore: | |
| Altri autori: | , , , , , |
| Riassunto: | Title screen Spark-plasma sintering (SPS) is used to fabricate fully-dense metal–matrix (Al/Mg) composites containing hard ceramic (boron carbide) and refractory metal (tungsten) inclusions. The study objectives include the modeling (and its experimental verification) of the process of the consolidation of the composites consisted of aluminum-magnesium alloy AMg6 (65 wt.%), B4C powder (15 wt.%), and W nano-powder (20 wt.%), as well as the optimization of the composite content and of the SPS conditions to achieve higher density. Discrete element modeling of the composite particles packing based on the particle size distribution functions of real powders is utilized for the determination of the powder compositions rendering maximum mixture packing densities. Two models: a power-law creep model of the high temperature deformation of powder materials, and an empirical logarithmic pressure–temperature–relative density relationship are successfully applied for the description of the densification of the aluminum-magnesium metal matrix powder composite subjected to spark-plasma sintering. The elastoplastic properties of the sintered composite samples are assessed by nanoindentation. Режим доступа: по договору с организацией-держателем ресурса |
| Lingua: | inglese |
| Pubblicazione: |
2016
|
| Soggetti: | |
| Accesso online: | http://dx.doi.org/10.1007/s11837-015-1781-1 |
| Natura: | Elettronico Capitolo di libro |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=648102 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 648102 | ||
| 005 | 20251126134220.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\13259 | ||
| 035 | |a RU\TPU\network\13256 | ||
| 090 | |a 648102 | ||
| 100 | |a 20160510d2016 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a US | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Spark Plasma Sintering of Aluminum-Magnesium-Matrix Composites with Boron Carbide and Tungsten Nano-powder Inclusions: Modeling and Experimentation |f E. S. Dvilis [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: р. 919, (23 tit.)] | ||
| 330 | |a Spark-plasma sintering (SPS) is used to fabricate fully-dense metal–matrix (Al/Mg) composites containing hard ceramic (boron carbide) and refractory metal (tungsten) inclusions. The study objectives include the modeling (and its experimental verification) of the process of the consolidation of the composites consisted of aluminum-magnesium alloy AMg6 (65 wt.%), B4C powder (15 wt.%), and W nano-powder (20 wt.%), as well as the optimization of the composite content and of the SPS conditions to achieve higher density. Discrete element modeling of the composite particles packing based on the particle size distribution functions of real powders is utilized for the determination of the powder compositions rendering maximum mixture packing densities. Two models: a power-law creep model of the high temperature deformation of powder materials, and an empirical logarithmic pressure–temperature–relative density relationship are successfully applied for the description of the densification of the aluminum-magnesium metal matrix powder composite subjected to spark-plasma sintering. The elastoplastic properties of the sintered composite samples are assessed by nanoindentation. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t The Journal of The Minerals, Metals & Materials Society |o Scientific Journal | ||
| 463 | |t Vol. 68, iss. 3 |v [P. 908-919] |d 2016 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 701 | 1 | |a Dvilis |b E. S. |c Chemical Engineer |c senior researcher of Tomsk Polytechnic University, Professor, doctor of physical and mathematical Sciences |f 1969- |g Edgar Sergeevich |3 (RuTPU)RU\TPU\pers\34597 |9 17959 | |
| 701 | 1 | |a Khasanov |b O. L. |c Russian physicist, materials scientist, Doctor of Engineering |c professor, Director of TPU Nano-Centre and Head of the Department "Nanomaterials and Nanotechnologies" of TPU |f 1958- |g Oleg Leonidovich |3 (RuTPU)RU\TPU\pers\27102 |9 12652 | |
| 701 | 1 | |a Gulbin |b V. N. |g Viktor Nikolaevich | |
| 701 | 1 | |a Petyukevich |b M. S. |c Specialist in the field of material science |c Engineer of Tomsk Polytechnic University |f 1982- |g Mariya Stanislavovna |3 (RuTPU)RU\TPU\pers\35551 |9 18732 | |
| 701 | 1 | |a Khasanov |b A. O. |c Chemical Engineer |c Engineer of Tomsk Polytechnic University |f 1987- |g Aleksey Olegovich |3 (RuTPU)RU\TPU\pers\31510 |9 15671 | |
| 701 | 1 | |a Olevsky |b E. A. |g Evgeny Aleksandrovich | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |c (2009- ) |9 26305 |
| 801 | 2 | |a RU |b 63413507 |c 20160510 |g RCR | |
| 856 | 4 | |u http://dx.doi.org/10.1007/s11837-015-1781-1 | |
| 942 | |c CF | ||