Spark Plasma Sintering of Aluminum-Magnesium-Matrix Composites with Boron Carbide and Tungsten Nano-powder Inclusions: Modeling and Experimentation

Dettagli Bibliografici
Parent link:The Journal of The Minerals, Metals & Materials Society: Scientific Journal
Vol. 68, iss. 3.— 2016.— [P. 908-919]
Ente Autore: Национальный исследовательский Томский политехнический университет
Altri autori: Dvilis E. S. Edgar Sergeevich, Khasanov O. L. Oleg Leonidovich, Gulbin V. N. Viktor Nikolaevich, Petyukevich M. S. Mariya Stanislavovna, Khasanov A. O. Aleksey Olegovich, Olevsky E. A. Evgeny Aleksandrovich
Riassunto:Title screen
Spark-plasma sintering (SPS) is used to fabricate fully-dense metal–matrix (Al/Mg) composites containing hard ceramic (boron carbide) and refractory metal (tungsten) inclusions. The study objectives include the modeling (and its experimental verification) of the process of the consolidation of the composites consisted of aluminum-magnesium alloy AMg6 (65 wt.%), B4C powder (15 wt.%), and W nano-powder (20 wt.%), as well as the optimization of the composite content and of the SPS conditions to achieve higher density. Discrete element modeling of the composite particles packing based on the particle size distribution functions of real powders is utilized for the determination of the powder compositions rendering maximum mixture packing densities. Two models: a power-law creep model of the high temperature deformation of powder materials, and an empirical logarithmic pressure–temperature–relative density relationship are successfully applied for the description of the densification of the aluminum-magnesium metal matrix powder composite subjected to spark-plasma sintering. The elastoplastic properties of the sintered composite samples are assessed by nanoindentation.
Режим доступа: по договору с организацией-держателем ресурса
Lingua:inglese
Pubblicazione: 2016
Soggetti:
Accesso online:http://dx.doi.org/10.1007/s11837-015-1781-1
Natura: Elettronico Capitolo di libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=648102

MARC

LEADER 00000naa0a2200000 4500
001 648102
005 20251126134220.0
035 |a (RuTPU)RU\TPU\network\13259 
035 |a RU\TPU\network\13256 
090 |a 648102 
100 |a 20160510d2016 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Spark Plasma Sintering of Aluminum-Magnesium-Matrix Composites with Boron Carbide and Tungsten Nano-powder Inclusions: Modeling and Experimentation  |f E. S. Dvilis [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: р. 919, (23 tit.)] 
330 |a Spark-plasma sintering (SPS) is used to fabricate fully-dense metal–matrix (Al/Mg) composites containing hard ceramic (boron carbide) and refractory metal (tungsten) inclusions. The study objectives include the modeling (and its experimental verification) of the process of the consolidation of the composites consisted of aluminum-magnesium alloy AMg6 (65 wt.%), B4C powder (15 wt.%), and W nano-powder (20 wt.%), as well as the optimization of the composite content and of the SPS conditions to achieve higher density. Discrete element modeling of the composite particles packing based on the particle size distribution functions of real powders is utilized for the determination of the powder compositions rendering maximum mixture packing densities. Two models: a power-law creep model of the high temperature deformation of powder materials, and an empirical logarithmic pressure–temperature–relative density relationship are successfully applied for the description of the densification of the aluminum-magnesium metal matrix powder composite subjected to spark-plasma sintering. The elastoplastic properties of the sintered composite samples are assessed by nanoindentation. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t The Journal of The Minerals, Metals & Materials Society  |o Scientific Journal 
463 |t Vol. 68, iss. 3  |v [P. 908-919]  |d 2016 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Dvilis  |b E. S.  |c Chemical Engineer  |c senior researcher of Tomsk Polytechnic University, Professor, doctor of physical and mathematical Sciences  |f 1969-  |g Edgar Sergeevich  |3 (RuTPU)RU\TPU\pers\34597  |9 17959 
701 1 |a Khasanov  |b O. L.  |c Russian physicist, materials scientist, Doctor of Engineering  |c professor, Director of TPU Nano-Centre and Head of the Department "Nanomaterials and Nanotechnologies" of TPU  |f 1958-  |g Oleg Leonidovich  |3 (RuTPU)RU\TPU\pers\27102  |9 12652 
701 1 |a Gulbin  |b V. N.  |g Viktor Nikolaevich 
701 1 |a Petyukevich  |b M. S.  |c Specialist in the field of material science  |c Engineer of Tomsk Polytechnic University  |f 1982-  |g Mariya Stanislavovna  |3 (RuTPU)RU\TPU\pers\35551  |9 18732 
701 1 |a Khasanov  |b A. O.  |c Chemical Engineer  |c Engineer of Tomsk Polytechnic University  |f 1987-  |g Aleksey Olegovich  |3 (RuTPU)RU\TPU\pers\31510  |9 15671 
701 1 |a Olevsky  |b E. A.  |g Evgeny Aleksandrovich 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |c (2009- )  |9 26305 
801 2 |a RU  |b 63413507  |c 20160510  |g RCR 
856 4 |u http://dx.doi.org/10.1007/s11837-015-1781-1 
942 |c CF