On the accuracy of approximation of a small celestial body motion using intermediate perturbed orbits calculated from two position vectors and three observations

Xehetasun bibliografikoak
Parent link:Solar System Research
Vol. 49, iss. 1.— 2015.— [P. 51-60]
Egile nagusia: Shefer V. A. Vladimir Aleksandrovich
Erakunde egilea: Национальный исследовательский Томский политехнический университет Институт кибернетики Кафедра информатики и проектирования систем
Beste egile batzuk: Shefer O. V. Olga Vladimirovna
Gaia:Title screen
We examine intermediate perturbed orbits proposed by the first author previously, defined from the two position vectors and three angular coordinates of a small celestial body. It is shown theoretically, that at a small reference time interval covering the measurements the approximation accuracy of real movements by these orbits corresponds approximately to the third order of osculation. The smaller reference interval of time, the better this correspondence. Laws of variation of the methodical errors in constructing intermediate orbits subject to the length of reference time interval are deduced. According to these laws, the convergence rate of the methods to the exact solution (upon reducing the reference interval of time) is higher by two orders of magnitude than in the case of conventional methods using the Keplerian unperturbed orbit. The consid ered orbits are among the most accurate in set of orbits of their class determined by the order of osculation. The theoretical results are validated by numerical examples.
Режим доступа: по договору с организацией-держателем ресурса
Argitaratua: 2015
Gaiak:
Sarrera elektronikoa:http://dx.doi.org/10.1134/S0038094615010074
Formatua: Baliabide elektronikoa Liburu kapitulua
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=647864

MARC

LEADER 00000naa0a2200000 4500
001 647864
005 20250217154833.0
035 |a (RuTPU)RU\TPU\network\13021 
035 |a RU\TPU\network\12946 
090 |a 647864 
100 |a 20160426d2015 k||y0rusy50 ba 
101 0 |a eng 
102 |a RU 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a On the accuracy of approximation of a small celestial body motion using intermediate perturbed orbits calculated from two position vectors and three observations  |f V. A. Shefer, O. V. Shefer 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 60 (10 tit.)] 
330 |a We examine intermediate perturbed orbits proposed by the first author previously, defined from the two position vectors and three angular coordinates of a small celestial body. It is shown theoretically, that at a small reference time interval covering the measurements the approximation accuracy of real movements by these orbits corresponds approximately to the third order of osculation. The smaller reference interval of time, the better this correspondence. Laws of variation of the methodical errors in constructing intermediate orbits subject to the length of reference time interval are deduced. According to these laws, the convergence rate of the methods to the exact solution (upon reducing the reference interval of time) is higher by two orders of magnitude than in the case of conventional methods using the Keplerian unperturbed orbit. The consid ered orbits are among the most accurate in set of orbits of their class determined by the order of osculation. The theoretical results are validated by numerical examples. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Solar System Research 
463 |t Vol. 49, iss. 1  |v [P. 51-60]  |d 2015 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a метод Гаусса 
610 1 |a орбита 
700 1 |a Shefer  |b V. A.  |g Vladimir Aleksandrovich 
701 1 |a Shefer  |b O. V.  |c specialist in the field of informatics and computer engineering  |c associate professor of Tomsk Polytechnic University, candidate of physico-mathematical sciences  |f 1960-  |g Olga Vladimirovna  |3 (RuTPU)RU\TPU\pers\33726  |9 17357 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Институт кибернетики  |b Кафедра информатики и проектирования систем  |3 (RuTPU)RU\TPU\col\18697  |9 27150 
801 2 |a RU  |b 63413507  |c 20160426  |g RCR 
856 4 |u http://dx.doi.org/10.1134/S0038094615010074 
942 |c CF