A Texture Fuzzy Classifier Based on the Training Set Clustering by a Self-Organizing Neural Network

Detalles Bibliográficos
Parent link:Communications in Computer and Information Science
Vol. 542 : Analysis of Images, Social Networks and Texts.— 2015.— [P. 187-195]
Autor Principal: Aksenov S. V. Sergey Vladimirovich
Autor Corporativo: Национальный исследовательский Томский политехнический университет (ТПУ) Институт кибернетики (ИК) Кафедра прикладной математики (ПМ)
Outros autores: Kostin K. A. Kirill Aleksandrovich, Laykom D. N. Dmitriy Nikolaevich
Summary:Title screen
The paper presents a fuzzy approach to the texture classification. According to the classifier the texture class is represented as a set of clusters in N-dimensional feature space that allows generating a cluster or clusters with an arbitrary shape and precisely reflecting any group of the vectors connected with the class. For each texture class it configures the self-organizing features map and estimates a degree of the overlap of the neighboring classes. Upon matching the maps each of them creates a set of fuzzy rules reflecting the feature value statistical distribution in its clusters. Advantages of the system are simplicity of the structure generation, functioning and performance. The suggested classification technique is universal and can be used not only as a texture analyzer but independently for many other real-world classification tasks.
Режим доступа: по договору с организацией-держателем ресурса
Publicado: 2015
Subjects:
Acceso en liña:http://dx.doi.org/10.1007/978-3-319-26123-2_18
Formato: Electrónico Capítulo de libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=647733

MARC

LEADER 00000naa0a2200000 4500
001 647733
005 20250620094517.0
035 |a (RuTPU)RU\TPU\network\12885 
090 |a 647733 
100 |a 20160421d2015 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a A Texture Fuzzy Classifier Based on the Training Set Clustering by a Self-Organizing Neural Network  |f S. V. Aksenov, K. A. Kostin, D. N. Laykom 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 21 tit.] 
330 |a The paper presents a fuzzy approach to the texture classification. According to the classifier the texture class is represented as a set of clusters in N-dimensional feature space that allows generating a cluster or clusters with an arbitrary shape and precisely reflecting any group of the vectors connected with the class. For each texture class it configures the self-organizing features map and estimates a degree of the overlap of the neighboring classes. Upon matching the maps each of them creates a set of fuzzy rules reflecting the feature value statistical distribution in its clusters. Advantages of the system are simplicity of the structure generation, functioning and performance. The suggested classification technique is universal and can be used not only as a texture analyzer but independently for many other real-world classification tasks. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 1 |t Communications in Computer and Information Science 
463 1 |t Vol. 542 : Analysis of Images, Social Networks and Texts  |o 4th International Conference, AIST 2015, Yekaterinburg, Russia, April 9–11, 2015, Revised Selected Papers  |o proceedings  |v [P. 187-195]  |d 2015 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a самоорганизующиеся карты 
700 1 |a Aksenov  |b S. V.  |c Specialist in the field of informatics and computer technology  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1983-  |g Sergey Vladimirovich  |3 (RuTPU)RU\TPU\pers\31378  |9 15550 
701 1 |a Kostin  |b K. A.  |c specialist in the field of Informatics and computer engineering  |c engineer at Tomsk Polytechnic University  |f 1992-  |g Kirill Aleksandrovich  |3 (RuTPU)RU\TPU\pers\36590 
701 1 |a Laykom  |b D. N.  |c specialist in the field of informatics and computer technology  |c Engineer of Tomsk Polytechnic University  |f 1990-  |g Dmitriy Nikolaevich  |3 (RuTPU)RU\TPU\pers\33832 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт кибернетики (ИК)  |b Кафедра прикладной математики (ПМ)  |3 (RuTPU)RU\TPU\col\18700 
801 2 |a RU  |b 63413507  |c 20211015  |g RCR 
850 |a 63413507 
856 4 |u http://dx.doi.org/10.1007/978-3-319-26123-2_18 
942 |c CF