Mathematical Modelling of Force Convection in a Two-Phase Thermosyphon in Conjugate Formulation
| Parent link: | European Physical Journal Web of Conferences (EPJ Web of Conferences) Vol. 110 : Thermophysical Basis of Energy Technologies.— 2016.— [01045, 7 p.] |
|---|---|
| Main Author: | |
| Corporate Author: | |
| Other Authors: | |
| Summary: | Title screen A nonlinear non-stationary problem of the conductive-convective heat transfer is addressed (under forced convection conditions) in the thermosyphon of rectangular cross-section. The thermal energy supply is carried out through the lower horizontal border. The mathematical model is formulated in dimensionless variables of "velocity vorticity vector – current function – temperature". The current and temperature distribution lines are obtained, illustrating the effect of the Reynolds number on the thermodynamic structures formation in the analyzed object. |
| Language: | English |
| Published: |
2016
|
| Subjects: | |
| Online Access: | http://dx.doi.org/10.1051/epjconf/201611001045 http://earchive.tpu.ru/handle/11683/33380 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=647688 |
MARC
| LEADER | 00000naa2a2200000 4500 | ||
|---|---|---|---|
| 001 | 647688 | ||
| 005 | 20250224161118.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\12834 | ||
| 035 | |a RU\TPU\network\12826 | ||
| 090 | |a 647688 | ||
| 100 | |a 20160420d2016 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 135 | |a drgn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Mathematical Modelling of Force Convection in a Two-Phase Thermosyphon in Conjugate Formulation |f А. Е. Nurpeiis, A. E. Nee | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 17 tit.] | ||
| 330 | |a A nonlinear non-stationary problem of the conductive-convective heat transfer is addressed (under forced convection conditions) in the thermosyphon of rectangular cross-section. The thermal energy supply is carried out through the lower horizontal border. The mathematical model is formulated in dimensionless variables of "velocity vorticity vector – current function – temperature". The current and temperature distribution lines are obtained, illustrating the effect of the Reynolds number on the thermodynamic structures formation in the analyzed object. | ||
| 461 | 1 | |0 (RuTPU)RU\TPU\network\7958 |t European Physical Journal Web of Conferences (EPJ Web of Conferences) | |
| 463 | 1 | |0 (RuTPU)RU\TPU\network\12773 |t Vol. 110 : Thermophysical Basis of Energy Technologies |o Proceedings of the Conference, October 13-15, 2015, Tomsk, Russia |f National Research Tomsk Polytechnic University (TPU) ; eds. G. V. Kuznetsov [et al.] |v [01045, 7 p.] |d 2016 | |
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a нелинейные задачи | |
| 610 | 1 | |a математическое моделирование | |
| 610 | 1 | |a теплоперенос | |
| 610 | 1 | |a тепловая энергия | |
| 610 | 1 | |a термосифоны | |
| 700 | 1 | |a Nurpeiis |b А. Е. |c an expert in the field of heat |c Assistant Tomsk Polytechnic University |f 1988- |g Atlant Ediluly |3 (RuTPU)RU\TPU\pers\34870 | |
| 701 | 1 | |a Nee |b A. E. |c specialist in the field of thermal engineering |c Associate Professor of Tomsk Polytechnic University, Candidate of Sciences |f 1990- |g Aleksandr Eduardovich |3 (RuTPU)RU\TPU\pers\35708 |9 18868 | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Энергетический институт (ЭНИН) |b Кафедра теоретической и промышленной теплотехники (ТПТ) |3 (RuTPU)RU\TPU\col\18679 |
| 801 | 2 | |a RU |b 63413507 |c 20161121 |g RCR | |
| 856 | 4 | |u http://dx.doi.org/10.1051/epjconf/201611001045 | |
| 856 | 4 | 0 | |u http://earchive.tpu.ru/handle/11683/33380 |
| 942 | |c CF | ||