Calculation of the heat flux near the liquid–gas–solid contact line

Bibliografische gegevens
Parent link:Applied Mathematical Modelling: Scientific Journal
Vol. 40, iss. 1.— 2016.— [P. 1029–1037]
Hoofdauteur: Karchevsky A. L. Andrey Leonidovich
Coauteur: Национальный исследовательский Томский политехнический университет Энергетический институт Кафедра теоретической и промышленной теплотехники
Andere auteurs: Marchuk I. V. Igor Vladimirovich, Kabov O. A. Oleg Aleksandrovich
Samenvatting:Title screen
The study deals with the heat and mass transfer process near the dynamic three-phase liquid–gas–solid contact line. The evaporating sessile water droplets on a horizontal heated constantan foil are studied experimentally. The temperature of the bottom foil surface is measured by an infrared scanner. To measure the heat flux density for the inaccessible part of the boundary by temperature measurements obtained for the accessible part, the well-known heated thin foil technique is applied. In contrast to the usual approach, the heat conductivity along the foil is taken into account. To determine the heat flux value in the boundary region, inaccessible for measurements, the problem of temperature field distribution in the foil is solved. From the point of mathematics, it is classified as the Cauchy problem for the elliptic equation. According to calculation results, the maximum heat flux density occurs in the region of the contact line and it surpasses the average heat flux from the entire foil surface by the factor of 5?7. The average heat flux density in the wetted zone exceeds the average heat flux density from the entire foil surface by the factor of 3?5. This is explained by heat inflow from the foil periphery to the droplet due to the relatively high heat conductivity coefficient of foil material, and high evaporation rate in the contact line zone.
Режим доступа: по договору с организацией-держателем ресурса
Taal:Engels
Gepubliceerd in: 2016
Onderwerpen:
Online toegang:http://dx.doi.org/10.1016/j.apm.2015.06.018
Formaat: Elektronisch Hoofdstuk
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=647500

MARC

LEADER 00000naa0a2200000 4500
001 647500
005 20250212111800.0
035 |a (RuTPU)RU\TPU\network\12640 
035 |a RU\TPU\network\252 
090 |a 647500 
100 |a 20160413d2016 k||y0rusy50 ba 
101 0 |a eng 
102 |a FR 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Calculation of the heat flux near the liquid–gas–solid contact line  |f A. L. Karchevsky, I. V. Marchuk, O. A. Kabov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 1036-1037 (57 tit.)] 
330 |a The study deals with the heat and mass transfer process near the dynamic three-phase liquid–gas–solid contact line. The evaporating sessile water droplets on a horizontal heated constantan foil are studied experimentally. The temperature of the bottom foil surface is measured by an infrared scanner. To measure the heat flux density for the inaccessible part of the boundary by temperature measurements obtained for the accessible part, the well-known heated thin foil technique is applied. In contrast to the usual approach, the heat conductivity along the foil is taken into account. To determine the heat flux value in the boundary region, inaccessible for measurements, the problem of temperature field distribution in the foil is solved. From the point of mathematics, it is classified as the Cauchy problem for the elliptic equation. According to calculation results, the maximum heat flux density occurs in the region of the contact line and it surpasses the average heat flux from the entire foil surface by the factor of 5?7. The average heat flux density in the wetted zone exceeds the average heat flux density from the entire foil surface by the factor of 3?5. This is explained by heat inflow from the foil periphery to the droplet due to the relatively high heat conductivity coefficient of foil material, and high evaporation rate in the contact line zone. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Applied Mathematical Modelling  |o Scientific Journal 
463 |t Vol. 40, iss. 1  |v [P. 1029–1037]  |d 2016 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
700 1 |a Karchevsky  |b A. L.  |g Andrey Leonidovich 
701 1 |a Marchuk  |b I. V.  |g Igor Vladimirovich 
701 1 |a Kabov  |b O. A.  |c specialist in the field of thermal engineering  |c Professor of Tomsk Polytechnic University, doctor of physical and mathematical Sciences  |f 1956-  |g Oleg Aleksandrovich  |3 (RuTPU)RU\TPU\pers\35151  |9 18418 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Энергетический институт  |b Кафедра теоретической и промышленной теплотехники  |3 (RuTPU)RU\TPU\col\18679  |9 27132 
801 2 |a RU  |b 63413507  |c 20160413  |g RCR 
856 4 |u http://dx.doi.org/10.1016/j.apm.2015.06.018 
942 |c CF