The structure of an rf-magnetron sputter-deposited silicate-containinghydroxyapatite-based coating investigated by high-resolution techniques

التفاصيل البيبلوغرافية
Parent link:Surface and Coatings Technology
Vol. 218.— 2013.— [P. 39-46]
مؤلف مشترك: Национальный исследовательский Томский политехнический университет (ТПУ) Физико-технический институт (ФТИ) Кафедра теоретической и экспериментальной физики (ТиЭФ) Центр технологий (ЦТ)
مؤلفون آخرون: Surmeneva M. A. Maria Alexandrovna, Chaikina M. V., Zaikovskiv V. I., Pichugin V. F. Vladimir Fyodorovich, Buck V., Prymak O., Epple M., Surmenev R. A. Roman Anatolievich
الملخص:Title screen
A biocompatible nanostructured silicate-containing hydroxyapatite-based (Si-HA) thin coating was deposited by radio-frequency (RF) magnetron sputtering on silicon and titanium substrates. The morphology of the Si-HA coating was pore-free, dense and followed the topography of the underlying substrates. Energy-dispersive X-ray spectroscopy (EDX) gave molar Ca/P and Ca/(P + Si) ratios of 1.78 and 1.45, respectively. According to XRD-analysis, the coating was nanocrystalline with a crystallite size in the range of 10-50 nm. The ultrastructure of the coating was analyzed by high-resolution transmission electron spectroscopy (HRTEM) combined with fast Fourier transform (FFT) analysis. The average crystallite size calculated by the Rietveld method was in good agreement with the HRTEM results. Moreover, HRTEM-observations indicated the presence of atomic layer misorientations originating from imperfections between the nanocrystals in the coating. The average coating nanohardness (11.6 ± 1.7 GPa) was significantly higher than that of the uncoated Ti substrate (4.0 ± 0.3 GPa), whereas no significant difference between the Young's modulus of the coating (125 ± 20 GPa) and the substrate (115 ± 10 GPa) was found. Immersion of the coated substrates in simulated body fluid (SBF) led to the deposition of an apatite layer.
Режим доступа: по договору с организацией-держателем ресурса
اللغة:الإنجليزية
منشور في: 2013
الموضوعات:
الوصول للمادة أونلاين:http://dx.doi.org/10.1016/j.surfcoat.2012.12.023
التنسيق: الكتروني فصل الكتاب
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=647440

MARC

LEADER 00000naa0a2200000 4500
001 647440
005 20250210163641.0
035 |a (RuTPU)RU\TPU\network\12580 
035 |a RU\TPU\network\7878 
090 |a 647440 
100 |a 20160411d2013 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a The structure of an rf-magnetron sputter-deposited silicate-containinghydroxyapatite-based coating investigated by high-resolution techniques  |f M. A. Surmeneva [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 46 (44 tit.)] 
330 |a A biocompatible nanostructured silicate-containing hydroxyapatite-based (Si-HA) thin coating was deposited by radio-frequency (RF) magnetron sputtering on silicon and titanium substrates. The morphology of the Si-HA coating was pore-free, dense and followed the topography of the underlying substrates. Energy-dispersive X-ray spectroscopy (EDX) gave molar Ca/P and Ca/(P + Si) ratios of 1.78 and 1.45, respectively. According to XRD-analysis, the coating was nanocrystalline with a crystallite size in the range of 10-50 nm. The ultrastructure of the coating was analyzed by high-resolution transmission electron spectroscopy (HRTEM) combined with fast Fourier transform (FFT) analysis. The average crystallite size calculated by the Rietveld method was in good agreement with the HRTEM results. Moreover, HRTEM-observations indicated the presence of atomic layer misorientations originating from imperfections between the nanocrystals in the coating. The average coating nanohardness (11.6 ± 1.7 GPa) was significantly higher than that of the uncoated Ti substrate (4.0 ± 0.3 GPa), whereas no significant difference between the Young's modulus of the coating (125 ± 20 GPa) and the substrate (115 ± 10 GPa) was found. Immersion of the coated substrates in simulated body fluid (SBF) led to the deposition of an apatite layer. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Surface and Coatings Technology 
463 |t Vol. 218  |v [P. 39-46]  |d 2013 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a calcium phosphate 
610 1 |a coatings 
610 1 |a nanocomposites 
610 1 |a implants 
610 1 |a фосфат кальция 
610 1 |a покрытия 
610 1 |a нанокомпозиты 
610 1 |a имплантаты 
701 1 |a Surmeneva  |b M. A.  |c specialist in the field of material science  |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist  |f 1984-  |g Maria Alexandrovna  |3 (RuTPU)RU\TPU\pers\31894  |9 15966 
701 1 |a Chaikina  |b M. V. 
701 1 |a Zaikovskiv  |b V. I. 
701 1 |a Pichugin  |b V. F.  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |c Physicist  |f 1944-2021  |g Vladimir Fyodorovich  |3 (RuTPU)RU\TPU\pers\30933  |9 15171 
701 1 |a Buck  |b V. 
701 1 |a Prymak  |b O. 
701 1 |a Epple  |b M. 
701 1 |a Surmenev  |b R. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences  |f 1982-  |g Roman Anatolievich  |3 (RuTPU)RU\TPU\pers\31885  |9 15957 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Физико-технический институт (ФТИ)  |b Кафедра теоретической и экспериментальной физики (ТиЭФ)  |b Центр технологий (ЦТ)  |3 (RuTPU)RU\TPU\col\20620 
801 2 |a RU  |b 63413507  |c 20210512  |g RCR 
856 4 |u http://dx.doi.org/10.1016/j.surfcoat.2012.12.023 
942 |c CF