Electron-ion plasma modification of Al-based alloys

Dades bibliogràfiques
Parent link:AIP Conference Proceedings
Vol. 1698 : Advanced Materials in Technology and Construction, AMTC-2015.— 2016.— [030012, 8 p.]
Autor corporatiu: Национальный исследовательский Томский политехнический университет
Altres autors: Ivanov Yu. F. Yuriy Fedorovich, Gracheva M. E. Mariya Evgenjevna, Petrikova E. A. Elizaveta Alekseevna, Krysina O. V. Olga Vasiljevna, Teresov A. D. Anton Dmitrievich, Ivanova O. V. Olga Viktorovna, Ikonnikova I. A. Irina Aleksandrovna
Sumari:Title screen
The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (?0.5 ?m) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN–AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film–substrate system were estimated by numerical simulation in a wide range of electron energy densities (5–30?J/cm2) and pulse durations (50–200 ?s). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young’s modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu–Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ?1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN–AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ?2.2 times at a surface hardness of ?14 GPa.
Режим доступа: по договору с организацией-держателем ресурса
Publicat: 2016
Matèries:
Accés en línia:http://dx.doi.org/10.1063/1.4937834
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=647403

MARC

LEADER 00000naa2a2200000 4500
001 647403
005 20251126134259.0
035 |a (RuTPU)RU\TPU\network\12542 
090 |a 647403 
100 |a 20160408d2016 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Electron-ion plasma modification of Al-based alloys  |f Yu. F. Ivanov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 15 tit.] 
330 |a The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (?0.5 ?m) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN–AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film–substrate system were estimated by numerical simulation in a wide range of electron energy densities (5–30?J/cm2) and pulse durations (50–200 ?s). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young’s modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu–Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ?1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN–AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ?2.2 times at a surface hardness of ?14 GPa. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 1 |0 (RuTPU)RU\TPU\network\4816  |t AIP Conference Proceedings 
463 1 |t Vol. 1698 : Advanced Materials in Technology and Construction, AMTC-2015  |o II All-Russian Scientific Conference of Young Scientists, 6-9 October 2015  |f Tomsk State University of Architecture and Building (TSUAB); ed. S. V. Starenchenko ; Yu. V. Solov'eva ; N. O. Kopanitsa  |v [030012, 8 p.]  |d 2016 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Ivanov  |b Yu. F.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1955-  |g Yuriy Fedorovich  |3 (RuTPU)RU\TPU\pers\33559 
701 1 |a Gracheva  |b M. E.  |g Mariya Evgenjevna 
701 1 |a Petrikova  |b E. A.  |g Elizaveta Alekseevna 
701 1 |a Krysina  |b O. V.  |g Olga Vasiljevna 
701 1 |a Teresov  |b A. D.  |g Anton Dmitrievich 
701 1 |a Ivanova  |b O. V.  |g Olga Viktorovna 
701 1 |a Ikonnikova  |b I. A.  |g Irina Aleksandrovna 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |c (2009- )  |9 26305 
801 2 |a RU  |b 63413507  |c 20160408  |g RCR 
850 |a 63413507 
856 4 |u http://dx.doi.org/10.1063/1.4937834 
942 |c CF