Triple-Diffusive Natural Convection in a Square Porous Cavity

Bibliographic Details
Parent link:Transport in Porous Media
Vol. 111, iss. 1.— 2016.— [P. 59-79]
Main Author: Ghalambaz M. Mehdi
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Энергетический институт (ЭНИН) Кафедра атомных и тепловых электростанций (АТЭС)
Other Authors: Moattar F. Faramarz, Sheremet M. A. Mikhail Aleksandrovich, Pop I. Ioan
Summary:Title screen
The triple-diffusive flow, heat and mass transfer in a cavity filled with a porous medium and saturated with a mixture is theoretically studied in a cavity with differential temperature and concentrations at the side walls. The effect of buoyancy forces due to mass transfer of phases is also taken into account using the Boussinesq approximation. The governing equations are transformed into a non-dimensional form and numerically solved using the finite element method. Five groups of non-dimensional parameters including the Rayleigh number, the Lewis numbers for phases 1 and 2, and the buoyancy ratio parameters for phases 1 and 2 are obtained. The effect of each group of non-dimensional parameters on the heat and mass transfer in the cavity is discussed. The results show that for specific values of the Lewis number of one phase, the heat transfer of the mixture and the mass transfer of the other phase can be maximum. The presence of one phase could reduce or enhance the mass transfer of the second phase depending on the Lewis number of phases.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2016
Subjects:
Online Access:http://dx.doi.org/10.1007/s11242-015-0581-y
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=646249

MARC

LEADER 00000nla0a2200000 4500
001 646249
005 20250402144232.0
035 |a (RuTPU)RU\TPU\network\11383 
035 |a RU\TPU\network\11355 
090 |a 646249 
100 |a 20160218d2016 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Triple-Diffusive Natural Convection in a Square Porous Cavity  |f M. Ghalambaz [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: р. 79, (35 tit.)] 
330 |a The triple-diffusive flow, heat and mass transfer in a cavity filled with a porous medium and saturated with a mixture is theoretically studied in a cavity with differential temperature and concentrations at the side walls. The effect of buoyancy forces due to mass transfer of phases is also taken into account using the Boussinesq approximation. The governing equations are transformed into a non-dimensional form and numerically solved using the finite element method. Five groups of non-dimensional parameters including the Rayleigh number, the Lewis numbers for phases 1 and 2, and the buoyancy ratio parameters for phases 1 and 2 are obtained. The effect of each group of non-dimensional parameters on the heat and mass transfer in the cavity is discussed. The results show that for specific values of the Lewis number of one phase, the heat transfer of the mixture and the mass transfer of the other phase can be maximum. The presence of one phase could reduce or enhance the mass transfer of the second phase depending on the Lewis number of phases. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Transport in Porous Media 
463 |t Vol. 111, iss. 1  |v [P. 59-79]  |d 2016 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
700 1 |a Ghalambaz  |b M.  |g Mehdi 
701 1 |a Moattar  |b F.  |g Faramarz 
701 1 |a Sheremet  |b M. A.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences  |f 1983-  |g Mikhail Aleksandrovich  |3 (RuTPU)RU\TPU\pers\35115  |9 18390 
701 1 |a Pop  |b I.  |g Ioan 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Энергетический институт (ЭНИН)  |b Кафедра атомных и тепловых электростанций (АТЭС)  |3 (RuTPU)RU\TPU\col\18683 
801 2 |a RU  |b 63413507  |c 20160218  |g RCR 
856 4 |u http://dx.doi.org/10.1007/s11242-015-0581-y 
942 |c CF