Neuro-fuzzy modelling and control of multistage dynamic processes that depend on inputs with uncertainty elements

التفاصيل البيبلوغرافية
Parent link:Journal of Theoretical and Applied Information Technology: Scientific Journal.— , 2005-
Vol. 80, № 1.— 2015.— [P. 1-12]
مؤلف مشترك: Национальный исследовательский Томский политехнический университет (ТПУ) Институт неразрушающего контроля (ИНК) Лаборатория № 63 (Медицинского приборостроения)
مؤلفون آخرون: Zhbanova N. Yu. Nataljya Yurjevna, Kravets O. Ya. Oleg Yakovlevich, Grigoriev M. G. Mikhail Georgievich, Babich L. N. Lyudmila Nikolaevna
الملخص:Title screen
In practice, we meet with a frequent necessity for modelling dynamic multistage processes that depend onseveral time-varying factors, which can be measured with accuracy. This requires using a model thatcombines properties of the difference, switched, and neuro-fuzzy models with a large number of inputs anda big memory depth of each input. Such model will take into account all uncertainties, converting inputactions into fuzzy processes by means of fuzzification, and will precisely reflect the multistage nature anddynamics of the object being studied. However, a large number of parameters can significantly complicateits configuration. The purpose of this work is to improve efficiency of structural and parametric modellingof multistage dynamic processes due to the development of a class of difference neuro-fuzzy switchedmodels, as well as to the research and development of approaches to fuzzification of discrete processes onmodel inputs in order to simplify the process of its configuration. The authors have introduced a new classof difference neuro-fuzzy switched models that are characterized by a combination of structures ofdifference fuzzy models, neural networks, and systems with switchings enabling to model complexmultistage processes, which are characterized by abrupt changes in structure or parameters. The authorshave proposed a mechanism for fuzzification of input actions of a difference neuro-fuzzy switched model,which is characterized by the ability to convert input actions into discrete fuzzy processes using twodimensionalfuzzy sets, and allows reducing the number of configurable parameters of the model.
اللغة:الإنجليزية
منشور في: 2015
الموضوعات:
الوصول للمادة أونلاين:http://www.jatit.org/volumes/Vol80No1/1Vol80No1.pdf
التنسيق: الكتروني فصل الكتاب
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=645933

MARC

LEADER 00000nla0a2200000 4500
001 645933
005 20250401111021.0
035 |a (RuTPU)RU\TPU\network\11038 
090 |a 645933 
100 |a 20160204d2015 k||y0rusy50 ba 
101 0 |a eng 
102 |a PK 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Neuro-fuzzy modelling and control of multistage dynamic processes that depend on inputs with uncertainty elements  |f N. Yu. Zhbanova [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 11-12 (21 tit.)] 
330 |a In practice, we meet with a frequent necessity for modelling dynamic multistage processes that depend onseveral time-varying factors, which can be measured with accuracy. This requires using a model thatcombines properties of the difference, switched, and neuro-fuzzy models with a large number of inputs anda big memory depth of each input. Such model will take into account all uncertainties, converting inputactions into fuzzy processes by means of fuzzification, and will precisely reflect the multistage nature anddynamics of the object being studied. However, a large number of parameters can significantly complicateits configuration. The purpose of this work is to improve efficiency of structural and parametric modellingof multistage dynamic processes due to the development of a class of difference neuro-fuzzy switchedmodels, as well as to the research and development of approaches to fuzzification of discrete processes onmodel inputs in order to simplify the process of its configuration. The authors have introduced a new classof difference neuro-fuzzy switched models that are characterized by a combination of structures ofdifference fuzzy models, neural networks, and systems with switchings enabling to model complexmultistage processes, which are characterized by abrupt changes in structure or parameters. The authorshave proposed a mechanism for fuzzification of input actions of a difference neuro-fuzzy switched model,which is characterized by the ability to convert input actions into discrete fuzzy processes using twodimensionalfuzzy sets, and allows reducing the number of configurable parameters of the model. 
461 |t Journal of Theoretical and Applied Information Technology  |o Scientific Journal  |d 2005- 
463 |t Vol. 80, № 1  |v [P. 1-12]  |d 2015 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a моделирование 
610 1 |a многоступенчатые динамические процессы 
610 1 |a нейронные сети 
610 1 |a случайные параметры 
701 1 |a Zhbanova  |b N. Yu.  |g Nataljya Yurjevna 
701 1 |a Kravets  |b O. Ya.  |g Oleg Yakovlevich 
701 1 |a Grigoriev  |b M. G.  |c specialist in the field of non-destructive testing  |c Engineer of Tomsk Polytechnic University  |f 1990-  |g Mikhail Georgievich  |3 (RuTPU)RU\TPU\pers\32606 
701 1 |a Babich  |b L. N.  |g Lyudmila Nikolaevna 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт неразрушающего контроля (ИНК)  |b Лаборатория № 63 (Медицинского приборостроения)  |3 (RuTPU)RU\TPU\col\19731 
801 2 |a RU  |b 63413507  |c 20160204  |g RCR 
856 4 |u http://www.jatit.org/volumes/Vol80No1/1Vol80No1.pdf 
942 |c CF