Program components for web-oriented geoinformation system of forest fire danger prediction
| Parent link: | SGEM. 14th International Multidisciplinary Scientific GeoConference: conference proceedings, Albena, Bulgaria, June 19-25, 2014.— , 2014 Bk. 2, Vol. 1.— 2014.— [P. 737-744] |
|---|---|
| Prif Awdur: | |
| Awduron Corfforaethol: | , |
| Awduron Eraill: | |
| Crynodeb: | Title screen The web-oriented geoinformation system for forest fire danger prediction based on a probabilistic fire danger criteria is described in the paper. The new method of the calculation of the probabilistic fire danger criteria is depicted. ? new formula for fire danger assessment for a certain time interval of forest fire season is obtained using the basic principles of the probability theory. A definition of the probability using frequency of events is used to calculate fire danger. The statistical data for certain forestry is used to determine all the multipliers in the formula of fire danger. The geoinformation system for forest fire danger assessment based on the method described here is developed by the Django platform in the programming language Python. The system architecture based on Django’s Model-View-Template is described in the paper. The software package that runs on the server allows to get and visualize a set of parameters describing forest fire danger. The GeoDjango framework was used for realization of cartographic functions. A fragment of a forest fire risk map which corresponds to certain value of fire danger is depicted. The estimation of the fire risk and visualization it on the map help to identify areas most prone to fire ignition and spread and to allocate forest fire fighting resources efficiently. Режим доступа: по договору с организацией-держателем ресурса |
| Iaith: | Saesneg |
| Cyhoeddwyd: |
2014
|
| Pynciau: | |
| Mynediad Ar-lein: | http://dx.doi.org/10.5593/SGEM2014/B21/S8.095 https://sgemworld.at/sgemlib/spip.php?article4092 |
| Fformat: | Electronig Pennod Llyfr |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=645547 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 645547 | ||
| 005 | 20250610120538.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\10632 | ||
| 090 | |a 645547 | ||
| 100 | |a 20151229d2014 k y0engy50 ca | ||
| 101 | 0 | |a eng | |
| 102 | |a BG | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Program components for web-oriented geoinformation system of forest fire danger prediction |f N. V. Baranovskiy, M. V. Zharikova | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 330 | |a The web-oriented geoinformation system for forest fire danger prediction based on a probabilistic fire danger criteria is described in the paper. The new method of the calculation of the probabilistic fire danger criteria is depicted. ? new formula for fire danger assessment for a certain time interval of forest fire season is obtained using the basic principles of the probability theory. A definition of the probability using frequency of events is used to calculate fire danger. The statistical data for certain forestry is used to determine all the multipliers in the formula of fire danger. The geoinformation system for forest fire danger assessment based on the method described here is developed by the Django platform in the programming language Python. The system architecture based on Django’s Model-View-Template is described in the paper. The software package that runs on the server allows to get and visualize a set of parameters describing forest fire danger. The GeoDjango framework was used for realization of cartographic functions. A fragment of a forest fire risk map which corresponds to certain value of fire danger is depicted. The estimation of the fire risk and visualization it on the map help to identify areas most prone to fire ignition and spread and to allocate forest fire fighting resources efficiently. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t SGEM. 14th International Multidisciplinary Scientific GeoConference |o conference proceedings, Albena, Bulgaria, June 19-25, 2014 |d 2014 | ||
| 463 | |t Bk. 2, Vol. 1 |v [P. 737-744] |d 2014 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a лесная пожарная опасность | |
| 610 | 1 | |a пожарные риски | |
| 610 | 1 | |a geoinfomation system | |
| 610 | 1 | |a forest fire danger | |
| 610 | 1 | |a fire danger criteria | |
| 610 | 1 | |a fire risk | |
| 610 | 1 | |a Django | |
| 610 | 1 | |a GeoDjango | |
| 610 | 1 | |a Python | |
| 610 | 1 | |a Model-View-Template | |
| 610 | 1 | |a геоинформационные системы | |
| 610 | 1 | |a лесные пожары | |
| 610 | 1 | |a пожароопасность | |
| 700 | 1 | |a Baranovskiy |b N. V. |c specialist in electrical engineering |c Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences |f 1978- |g Nikolay Viktorovich |3 (RuTPU)RU\TPU\pers\34172 |9 17706 | |
| 701 | 1 | |a Zharikova |b M. V. |g Marina Vitaljevna | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Институт природных ресурсов (ИПР) |b Кафедра геологии и разведки полезных ископаемых (ГРПИ) |3 (RuTPU)RU\TPU\col\18660 |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Энергетический институт (ЭНИН) |b Кафедра теоретической и промышленной теплотехники (ТПТ) |3 (RuTPU)RU\TPU\col\18679 |
| 801 | 2 | |a RU |b 63413507 |c 20180212 |g RCR | |
| 850 | |a 63413507 | ||
| 856 | 4 | |u http://dx.doi.org/10.5593/SGEM2014/B21/S8.095 | |
| 856 | 4 | |u https://sgemworld.at/sgemlib/spip.php?article4092 | |
| 942 | |c CF | ||