Program components for web-oriented geoinformation system of forest fire danger prediction

Manylion Llyfryddiaeth
Parent link:SGEM. 14th International Multidisciplinary Scientific GeoConference: conference proceedings, Albena, Bulgaria, June 19-25, 2014.— , 2014
Bk. 2, Vol. 1.— 2014.— [P. 737-744]
Prif Awdur: Baranovskiy N. V. Nikolay Viktorovich
Awduron Corfforaethol: Национальный исследовательский Томский политехнический университет (ТПУ) Институт природных ресурсов (ИПР) Кафедра геологии и разведки полезных ископаемых (ГРПИ), Национальный исследовательский Томский политехнический университет (ТПУ) Энергетический институт (ЭНИН) Кафедра теоретической и промышленной теплотехники (ТПТ)
Awduron Eraill: Zharikova M. V. Marina Vitaljevna
Crynodeb:Title screen
The web-oriented geoinformation system for forest fire danger prediction based on a probabilistic fire danger criteria is described in the paper. The new method of the calculation of the probabilistic fire danger criteria is depicted. ? new formula for fire danger assessment for a certain time interval of forest fire season is obtained using the basic principles of the probability theory. A definition of the probability using frequency of events is used to calculate fire danger. The statistical data for certain forestry is used to determine all the multipliers in the formula of fire danger. The geoinformation system for forest fire danger assessment based on the method described here is developed by the Django platform in the programming language Python. The system architecture based on Django’s Model-View-Template is described in the paper. The software package that runs on the server allows to get and visualize a set of parameters describing forest fire danger. The GeoDjango framework was used for realization of cartographic functions. A fragment of a forest fire risk map which corresponds to certain value of fire danger is depicted. The estimation of the fire risk and visualization it on the map help to identify areas most prone to fire ignition and spread and to allocate forest fire fighting resources efficiently.
Режим доступа: по договору с организацией-держателем ресурса
Iaith:Saesneg
Cyhoeddwyd: 2014
Pynciau:
Mynediad Ar-lein:http://dx.doi.org/10.5593/SGEM2014/B21/S8.095
https://sgemworld.at/sgemlib/spip.php?article4092
Fformat: Electronig Pennod Llyfr
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=645547

MARC

LEADER 00000naa0a2200000 4500
001 645547
005 20250610120538.0
035 |a (RuTPU)RU\TPU\network\10632 
090 |a 645547 
100 |a 20151229d2014 k y0engy50 ca 
101 0 |a eng 
102 |a BG 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Program components for web-oriented geoinformation system of forest fire danger prediction  |f N. V. Baranovskiy, M. V. Zharikova 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a The web-oriented geoinformation system for forest fire danger prediction based on a probabilistic fire danger criteria is described in the paper. The new method of the calculation of the probabilistic fire danger criteria is depicted. ? new formula for fire danger assessment for a certain time interval of forest fire season is obtained using the basic principles of the probability theory. A definition of the probability using frequency of events is used to calculate fire danger. The statistical data for certain forestry is used to determine all the multipliers in the formula of fire danger. The geoinformation system for forest fire danger assessment based on the method described here is developed by the Django platform in the programming language Python. The system architecture based on Django’s Model-View-Template is described in the paper. The software package that runs on the server allows to get and visualize a set of parameters describing forest fire danger. The GeoDjango framework was used for realization of cartographic functions. A fragment of a forest fire risk map which corresponds to certain value of fire danger is depicted. The estimation of the fire risk and visualization it on the map help to identify areas most prone to fire ignition and spread and to allocate forest fire fighting resources efficiently. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t SGEM. 14th International Multidisciplinary Scientific GeoConference  |o conference proceedings, Albena, Bulgaria, June 19-25, 2014  |d 2014 
463 |t Bk. 2, Vol. 1  |v [P. 737-744]  |d 2014 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a лесная пожарная опасность 
610 1 |a пожарные риски 
610 1 |a geoinfomation system 
610 1 |a forest fire danger 
610 1 |a fire danger criteria 
610 1 |a fire risk 
610 1 |a Django 
610 1 |a GeoDjango 
610 1 |a Python 
610 1 |a Model-View-Template 
610 1 |a геоинформационные системы 
610 1 |a лесные пожары 
610 1 |a пожароопасность 
700 1 |a Baranovskiy  |b N. V.  |c specialist in electrical engineering  |c Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences  |f 1978-  |g Nikolay Viktorovich  |3 (RuTPU)RU\TPU\pers\34172  |9 17706 
701 1 |a Zharikova  |b M. V.  |g Marina Vitaljevna 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт природных ресурсов (ИПР)  |b Кафедра геологии и разведки полезных ископаемых (ГРПИ)  |3 (RuTPU)RU\TPU\col\18660 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Энергетический институт (ЭНИН)  |b Кафедра теоретической и промышленной теплотехники (ТПТ)  |3 (RuTPU)RU\TPU\col\18679 
801 2 |a RU  |b 63413507  |c 20180212  |g RCR 
850 |a 63413507 
856 4 |u http://dx.doi.org/10.5593/SGEM2014/B21/S8.095 
856 4 |u https://sgemworld.at/sgemlib/spip.php?article4092 
942 |c CF