A new compound arithmetic crossover-based genetic algorithm for constrained optimisation in enterprise systems

Bibliografiske detaljer
Parent link:Enterprise Information Systems
25 Aug 2015.— 2015.— [15 p.]
Institution som forfatter: Национальный исследовательский Томский политехнический университет (ТПУ) Юргинский технологический институт (филиал) (ЮТИ) Кафедра информационных систем (ИС)
Andre forfattere: Jin Ch. Chenxia, Li F. Fachao, Tsang E. C. C. Eric, Bulysheva L. Larissa, Kataev M. Yu. Mikhail Yurievich
Summary:Title screen
In many real industrial applications, the integration of raw data with a methodology can support economically sound decision-making. Furthermore, most of these tasks involve complex optimisation problems. Seeking better solutions is critical. As an intelligent search optimisation algorithm, genetic algorithm (GA) is an important technique for complex system optimisation, but it has internal drawbacks such as low computation efficiency and prematurity. Improving the performance of GA is a vital topic in academic and applications research. In this paper, a new real-coded crossover operator, called compound arithmetic crossover operator (CAC), is proposed. CAC is used in conjunction with a uniform mutation operator to define a new genetic algorithm CAC10-GA. This GA is compared with an existing genetic algorithm (AC10-GA) that comprises an arithmetic crossover operator and a uniform mutation operator. To judge the performance of CAC10-GA, two kinds of analysis are performed. First the analysis of the convergence of CAC10-GA is performed by the Markov chain theory; second, a pair-wise comparison is carried out between CAC10-GA and AC10-GA through two test problems available in the global optimisation literature. The overall comparative study shows that the CAC performs quite well and the CAC10-GA defined outperforms the AC10-GA.
Режим доступа: по договору с организацией-держателем ресурса
Sprog:engelsk
Udgivet: 2015
Fag:
Online adgang:http://dx.doi.org/10.1080/17517575.2015.1080302
Format: Electronisk Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=644962

MARC

LEADER 00000nla0a2200000 4500
001 644962
005 20250318163658.0
035 |a (RuTPU)RU\TPU\network\10046 
035 |a RU\TPU\network\175 
090 |a 644962 
100 |a 20151207d2015 k||y0rusy50 ba 
101 0 |a eng 
102 |a GB 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a A new compound arithmetic crossover-based genetic algorithm for constrained optimisation in enterprise systems  |f Ch. Jin [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a In many real industrial applications, the integration of raw data with a methodology can support economically sound decision-making. Furthermore, most of these tasks involve complex optimisation problems. Seeking better solutions is critical. As an intelligent search optimisation algorithm, genetic algorithm (GA) is an important technique for complex system optimisation, but it has internal drawbacks such as low computation efficiency and prematurity. Improving the performance of GA is a vital topic in academic and applications research. In this paper, a new real-coded crossover operator, called compound arithmetic crossover operator (CAC), is proposed. CAC is used in conjunction with a uniform mutation operator to define a new genetic algorithm CAC10-GA. This GA is compared with an existing genetic algorithm (AC10-GA) that comprises an arithmetic crossover operator and a uniform mutation operator. To judge the performance of CAC10-GA, two kinds of analysis are performed. First the analysis of the convergence of CAC10-GA is performed by the Markov chain theory; second, a pair-wise comparison is carried out between CAC10-GA and AC10-GA through two test problems available in the global optimisation literature. The overall comparative study shows that the CAC performs quite well and the CAC10-GA defined outperforms the AC10-GA. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Enterprise Information Systems 
463 |t 25 Aug 2015  |v [15 p.]  |d 2015 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Jin  |b Ch.  |g Chenxia 
701 1 |a Li  |b F.  |g Fachao 
701 1 |a Tsang  |b E. C. C.  |g Eric 
701 1 |a Bulysheva  |b L.  |g Larissa 
701 1 |a Kataev  |b M. Yu.  |c specialist in the field of informatics and computer engineering  |c Professor of Yurga technological Institute of Tomsk Polytechnic University, doctor of technical sciences  |f 1961-  |g Mikhail Yurievich  |3 (RuTPU)RU\TPU\pers\34686  |9 18036 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Юргинский технологический институт (филиал) (ЮТИ)  |b Кафедра информационных систем (ИС)  |3 (RuTPU)RU\TPU\col\18893 
801 2 |a RU  |b 63413507  |c 20151207  |g RCR 
856 4 |u http://dx.doi.org/10.1080/17517575.2015.1080302 
942 |c CF