Development of Numerical Models of Interfaces for Multiscale Simulation of Heterogeneous Materials

Dettagli Bibliografici
Parent link:AIP Conference Proceedings
Vol. 1683 : Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures.— 2015.— [020011, 4 p.]
Ente Autore: Национальный исследовательский Томский политехнический университет (ТПУ) Институт физики высоких технологий (ИФВТ) Кафедра физики высоких технологий в машиностроении (ФВТМ)
Altri autori: Astafurov S. V., Shilko E. V., Dimaki A. V., Psakhie S. G. Sergey Grigorievich
Riassunto:Title screen
The paper is devoted to development of a model of the "third body" in the framework of movable cellular automaton method to take account of interfaces in heterogeneous interfacial materials. The main feature of the developed approach is the ability of direct account of the width and rheology of interphase/grain boundaries as well as their nonequilibrium state. Results of the verification of the developed model showed that it can be effectively used to study the response of such interfacial materials, for which is hampered to us use “classical” approaches of implicit and explicit accounting interfaces in the framework of discrete element methods.
Режим доступа: по договору с организацией-держателем ресурса
Lingua:inglese
Pubblicazione: 2015
Soggetti:
Accesso online:http://dx.doi.org/10.1063/1.4932701
Natura: Elettronico Capitolo di libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=644849
Descrizione
Riassunto:Title screen
The paper is devoted to development of a model of the "third body" in the framework of movable cellular automaton method to take account of interfaces in heterogeneous interfacial materials. The main feature of the developed approach is the ability of direct account of the width and rheology of interphase/grain boundaries as well as their nonequilibrium state. Results of the verification of the developed model showed that it can be effectively used to study the response of such interfacial materials, for which is hampered to us use “classical” approaches of implicit and explicit accounting interfaces in the framework of discrete element methods.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1063/1.4932701