Generation and diagnostics of pulsed intense ion beams with an energy density of 10 J/cm2
| Parent link: | Review of Scientific Instruments Vol. 86, iss. 7.— 2015.— [073305 , 7 p.] |
|---|---|
| Korporacja: | Национальный исследовательский Томский политехнический университет (ТПУ) Физико-технический институт (ФТИ) Кафедра прикладной физики (№ 12) (ПФ) |
| Kolejni autorzy: | Isakova Yu. I. Yulia Ivanovna, Pushkarev A. I. Aleksandr Ivanovich, Khaylov I. P. Iljya Pavlovich, Zhong H. Haowen |
| Streszczenie: | Title screen The paper presents the results of a study on transportation and focusing of a pulsed ion beam at gigawatt power level, generated by a diode with explosive-emission cathode. The experiments were carried out with the TEMP-4M accelerator operating in double-pulse mode: the first pulse is of negative polarity (500 ns, 100-150 kV), and this is followed by a second pulse of positive polarity (120 ns, 200-250 kV). To reduce the beam divergence, we modified the construction of the diode. The width of the anode was increased compared to that of the cathode. We studied different configurations of planar and focusing strip diodes. It was found that the divergence of the ion beam formed by a planar strip diode, after construction modification, does not exceed 3° (half-angle). Modification to the construction of a focusing diode made it possible to reduce thebeam divergence from 8° to 4°-5°, as well as to increase the energy density at the focus up to 10-12 J/cm2, and decrease the shot to shot variation in the energy density from 10%-15% to 5%-6%. When measuring the ion beam energy density above the ablation threshold of the target material (3.5-4 J/cm2), we used a metal mesh with 50% transparency to lower the energy density. The influence of the metal mesh on beam transport has been studied. Режим доступа: по договору с организацией-держателем ресурса |
| Wydane: |
2015
|
| Hasła przedmiotowe: | |
| Dostęp online: | http://dx.doi.org/10.1063/1.4926564 |
| Format: | Elektroniczne Rozdział |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=644772 |
Podobne zapisy
Characterization of intense ion beam energy density and beam induced pressure on the target with acoustic diagnostics
Wydane: (2013)
Wydane: (2013)
Analysis of correctness of intense ion beam diagnostics based on the ion-current density
od: Pushkarev A. I. Aleksandr Ivanovich
Wydane: (2015)
od: Pushkarev A. I. Aleksandr Ivanovich
Wydane: (2015)
Distribution of the energy density of a pulsed ion beam
od: Pushkarev A. I. Aleksandr Ivanovich
Wydane: (2016)
od: Pushkarev A. I. Aleksandr Ivanovich
Wydane: (2016)
Generation of high-intensity aluminum-ion beams at low energy
Wydane: (2018)
Wydane: (2018)
High-intensity pulsed ion beam generation in plasma erosion mode
od: Pushkarev A. I. Aleksandr Ivanovich
Wydane: (2019)
od: Pushkarev A. I. Aleksandr Ivanovich
Wydane: (2019)
High intensity metal ion beam generation
Wydane: (2017)
Wydane: (2017)
The ablation of plastics by intense pulsed ion beam
Wydane: (2020)
Wydane: (2020)
Study of energy deposition of intense pulsed ion beam in metal target
Wydane: (2015)
Wydane: (2015)
Generation and transportation of high-intensity pulsed ion beam at varying background pressures
Wydane: (2017)
Wydane: (2017)
Visualization and analysis of pulsed ion beam energy density profile with infrared imaging
od: Egorova Yu. I. Yulia Ivanovna
Wydane: (2018)
od: Egorova Yu. I. Yulia Ivanovna
Wydane: (2018)
Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode
Wydane: (2016)
Wydane: (2016)
Dynamic energy spectrum and energy deposition in solid target by intense pulsed ion beams
Wydane: (2017)
Wydane: (2017)
Extending the range of measurement of thermal imaging diagnostics of a high-intensity pulsed ion beam
Wydane: (2019)
Wydane: (2019)
Formation of repetitively pulsed high-intensity, low-energy silicon ion beams
Wydane: (2020)
Wydane: (2020)
Influence of Vacuum Condition on Generation and Transportation of a High-Intensity Pulsed Ion Beam
Wydane: (2016)
Wydane: (2016)
Investigation of Magnetically Insulated Diode for Intense Pulsed Ion Beam Generation for Materials Research
Wydane: (2019)
Wydane: (2019)
Submillisecond Chromium Ion Beams with High-Pulse Power Density
od: Gurulev A. V. Aleksandr Valerjevich
Wydane: (2024)
od: Gurulev A. V. Aleksandr Valerjevich
Wydane: (2024)
Numerical simulation of high-intensity metal ion beam generation
Wydane: (2018)
Wydane: (2018)
Shielding of energy deposition by ablation of plastics under intense pulsed ion beam irradiation
Wydane: (2020)
Wydane: (2020)
High intensity pulsed ion beam sources and their industrial applications
Wydane: (1999)
Wydane: (1999)
Energy spectrum analysis for intense pulsed electron beam
Wydane: (2016)
Wydane: (2016)
Time-of-Flight Optical Diagnostics of High-Power Pulsed Ion Beams
od: Ryzhkov V. A. Vladislav Andreevich
Wydane: (2020)
od: Ryzhkov V. A. Vladislav Andreevich
Wydane: (2020)
Research of the condensed beam stop dynamics under loading with a high-power ion beam of power density >= 10{10}W/cm{2}
od: Daneykin (Daneikin) Yu. V. Yuri Viktorovich
Wydane: (2016)
od: Daneykin (Daneikin) Yu. V. Yuri Viktorovich
Wydane: (2016)
High-Current Pulsed Induction Plasma Source for Generation of High Intensity Ion Beams of Various Gases
Wydane: (2019)
Wydane: (2019)
High-intensity pulsed ion beam composition and the energy spectrum using the time-of-flight method
od: Pushkarev A. I. Aleksandr Ivanovich
Wydane: (2018)
od: Pushkarev A. I. Aleksandr Ivanovich
Wydane: (2018)
Ablation induced by intense pulsed ion beam and its effects on energy deposition on solid target
Wydane: (2019)
Wydane: (2019)
Influence of ablation on energy deposition in polymer material under irradiation of intense pulsed ion beam
Wydane: (2020)
Wydane: (2020)
High-Intensity Implantation With an Ion Beam's Energy Impact on Materials
od: Ryabchikov A. I. Aleksandr Ilyich
Wydane: (2021)
od: Ryabchikov A. I. Aleksandr Ilyich
Wydane: (2021)
High-intensity implantation of titanium into silicon using repetitively pulsed high-density beams
Wydane: (2025)
Wydane: (2025)
Study on ablation products of zinc by intense pulsed ion beam irradiation
Wydane: (2017)
Wydane: (2017)
High-intensity pulsed ion beam focusing by iys own charge
Wydane: (2018)
Wydane: (2018)
Surface modification of AISI-4620 steel with intense pulsed ion beams
Wydane: (1997)
Wydane: (1997)
Research of mechanisms of target overheating at intense pulsed ion beam irradiation
Wydane: (2018)
Wydane: (2018)
Research of Energy Density for Pulsed Electron Beam of Wide Electron Kinetic Energy Spectrum
Wydane: (2018)
Wydane: (2018)
Ballistic formation of high-intensity low-energy gas ion beams
Wydane: (2020)
Wydane: (2020)
High-Intensity Implantation of Aluminum into Titanium Using Repetitiely-Pulsed High Power Density Beams
Wydane: (2024)
Wydane: (2024)
A method of real-time monitoring beam output stability of intense pulsed ion beam
Wydane: (2023)
Wydane: (2023)
Formation of Pulsed-Periodic Beam of Metal Ions of Submillisecond Duration with High Power Density
od: Ryabchikov A. I. Aleksandr Ilyich
Wydane: (2025)
od: Ryabchikov A. I. Aleksandr Ilyich
Wydane: (2025)
Repetitively-pulsed nitrogen implantation in titanium by a high-power density ion beam
Wydane: (2022)
Wydane: (2022)
Pulse-frequency, high-intensity ion beams based on a vacuum arc
od: Arzubov N. M.
Wydane: (1989)
od: Arzubov N. M.
Wydane: (1989)
Podobne zapisy
-
Characterization of intense ion beam energy density and beam induced pressure on the target with acoustic diagnostics
Wydane: (2013) -
Analysis of correctness of intense ion beam diagnostics based on the ion-current density
od: Pushkarev A. I. Aleksandr Ivanovich
Wydane: (2015) -
Distribution of the energy density of a pulsed ion beam
od: Pushkarev A. I. Aleksandr Ivanovich
Wydane: (2016) -
Generation of high-intensity aluminum-ion beams at low energy
Wydane: (2018) -
High-intensity pulsed ion beam generation in plasma erosion mode
od: Pushkarev A. I. Aleksandr Ivanovich
Wydane: (2019)