Free convection in a porous horizontal cylindrical annulus with a nanofluid using Buongiorno’s model
| Parent link: | Computers and Fluids Vol. 118.— 2015.— [P. 182-190] |
|---|---|
| المؤلف الرئيسي: | |
| مؤلف مشترك: | |
| مؤلفون آخرون: | |
| الملخص: | Title screen Natural convection flow in a porous concentric horizontal annulus saturated with a water based nanofluid is numerically investigated. The mathematical model used is of single-phase and is formulated in dimensionless stream function and temperature taking into account the Darcy–Boussinesq approximation and the nanofluid model proposed by Buongiorno. The transformed dimensionless partial differential equations have been solved using a second-order accurate finite-difference technique. The results indicate that inclusion of nanoparticles into pure water changes the flow structure at low values of the Rayleigh number. Режим доступа: по договору с организацией-держателем ресурса |
| اللغة: | الإنجليزية |
| منشور في: |
2015
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | http://dx.doi.org/10.1016/j.compfluid.2015.06.022 |
| التنسيق: | الكتروني فصل الكتاب |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=644712 |
MARC
| LEADER | 00000nla0a2200000 4500 | ||
|---|---|---|---|
| 001 | 644712 | ||
| 005 | 20250317154237.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\9796 | ||
| 090 | |a 644712 | ||
| 100 | |a 20151127d2015 k||u0rusy50 ba | ||
| 101 | 1 | |a eng | |
| 102 | |a NL | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Free convection in a porous horizontal cylindrical annulus with a nanofluid using Buongiorno’s model |f M. A. Sheremet, I. Pop | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: p. 189-190 (50 tit.)] | ||
| 330 | |a Natural convection flow in a porous concentric horizontal annulus saturated with a water based nanofluid is numerically investigated. The mathematical model used is of single-phase and is formulated in dimensionless stream function and temperature taking into account the Darcy–Boussinesq approximation and the nanofluid model proposed by Buongiorno. The transformed dimensionless partial differential equations have been solved using a second-order accurate finite-difference technique. The results indicate that inclusion of nanoparticles into pure water changes the flow structure at low values of the Rayleigh number. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t Computers and Fluids | ||
| 463 | |t Vol. 118 |v [P. 182-190] |d 2015 | ||
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a наножидкости | |
| 610 | 1 | |a межтрубное пространство | |
| 610 | 1 | |a пористые среды | |
| 610 | 1 | |a численные методы | |
| 700 | 1 | |a Sheremet |b M. A. |c physicist |c Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences |f 1983- |g Mikhail Aleksandrovich |3 (RuTPU)RU\TPU\pers\35115 |9 18390 | |
| 701 | 1 | |a Pop |b I. | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Энергетический институт (ЭНИН) |b Кафедра атомных и тепловых электростанций (АТЭС) |3 (RuTPU)RU\TPU\col\18683 |
| 801 | 2 | |a RU |b 63413507 |c 20160229 |g RCR | |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1016/j.compfluid.2015.06.022 |
| 942 | |c CF | ||