Unsteady Conjugate Natural Convection in a Three-Dimensional Porous Enclosure

Bibliographic Details
Parent link:Numerical Heat Transfer.— , 1986-
Vol. 68, iss. 3.— 2015.— [P. 243-267]
Main Author: Sheremet M. A. Mikhail Aleksandrovich
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Энергетический институт (ЭНИН) Кафедра атомных и тепловых электростанций (АТЭС)
Summary:Title screen
Transient-free convection in a porous enclosure having heat-conducting solid walls of finite thickness under conditions of convective heat exchange with an environment was studied numerically. A heat source of constant temperature was located at the bottom of the cavity. The governing equations in porous volume formulated in dimensionless variables such as the temperature and vector potential functions within the Darcy-Boussinesq approach and the transient three-dimensional heat conduction equation based on the Fourier hypothesis for solid walls with corresponding initial and boundary conditions were solved using an iterative implicit finite-difference method. The main objective was to investigate the influence of the Rayleigh number 103 ≤ Ra ≤ 106, the Darcy number 10−5 ≤ Da ≤ 10−3, the thermal conductivity ratio 1 ≤ k1,2 ≤ 20, the solid wall thickness ratio 0.1 ≤ l/L ≤ 0.3, and the dimensionless time 0 ≤ τ ≤ 200 on the fluid flow and heat transfer. Comprehensive analysis of the effects of these key parameters on the average Nusselt number at the heat source surface was conducted.
Language:English
Published: 2015
Subjects:
Online Access:http://dx.doi.org/10.1080/10407782.2014.977172
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=644644

MARC

LEADER 00000nla0a2200000 4500
001 644644
005 20250317124847.0
035 |a (RuTPU)RU\TPU\network\9728 
035 |a RU\TPU\network\7877 
090 |a 644644 
100 |a 20151124d2015 k||y0rusy50 ba 
101 0 |a eng 
102 |a GB 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Unsteady Conjugate Natural Convection in a Three-Dimensional Porous Enclosure  |f M. A. Sheremet 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a Transient-free convection in a porous enclosure having heat-conducting solid walls of finite thickness under conditions of convective heat exchange with an environment was studied numerically. A heat source of constant temperature was located at the bottom of the cavity. The governing equations in porous volume formulated in dimensionless variables such as the temperature and vector potential functions within the Darcy-Boussinesq approach and the transient three-dimensional heat conduction equation based on the Fourier hypothesis for solid walls with corresponding initial and boundary conditions were solved using an iterative implicit finite-difference method. The main objective was to investigate the influence of the Rayleigh number 103 ≤ Ra ≤ 106, the Darcy number 10−5 ≤ Da ≤ 10−3, the thermal conductivity ratio 1 ≤ k1,2 ≤ 20, the solid wall thickness ratio 0.1 ≤ l/L ≤ 0.3, and the dimensionless time 0 ≤ τ ≤ 200 on the fluid flow and heat transfer. Comprehensive analysis of the effects of these key parameters on the average Nusselt number at the heat source surface was conducted. 
461 |t Numerical Heat Transfer  |d 1986- 
463 |t Vol. 68, iss. 3  |v [P. 243-267]  |d 2015 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a естественная конвекция 
610 1 |a нестационарные режимы 
700 1 |a Sheremet  |b M. A.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences  |f 1983-  |g Mikhail Aleksandrovich  |3 (RuTPU)RU\TPU\pers\35115  |9 18390 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Энергетический институт (ЭНИН)  |b Кафедра атомных и тепловых электростанций (АТЭС)  |3 (RuTPU)RU\TPU\col\18683 
801 2 |a RU  |b 63413507  |c 20151124  |g RCR 
856 4 |u http://dx.doi.org/10.1080/10407782.2014.977172 
942 |c CF