Experimentally determining the sizes of water flow droplets entrained by high-temperature gases

Podrobná bibliografie
Parent link:Thermal Engineering
Vol. 62, iss. 8.— 2015.— [P. 586-592]
Korporativní autor: Национальный исследовательский Томский политехнический университет (ТПУ) Энергетический институт (ЭНИН) Кафедра теоретической и промышленной теплотехники (ТПТ)
Další autoři: Volkov R. S. Roman Sergeevich, Zhdanova A. O. Alena Olegovna, Kuznetsov G. V. Geny Vladimirovich, Strizhak P. A. Pavel Alexandrovich
Shrnutí:Title screen
Regularities pertinent to counter mixing of the flows of high-temperature (1000 K) gases and water (with the characteristic droplet sizes from 0.05 to 0.5 mm) are experimentally investigated using high-speed (105 snapshots per second) cross-correlation video recording equipment and panoramic optic digital “tracer” visualization methods (called the Particle Image Velocimetry and Interferometric Particle Imaging techniiques). The sizes of droplets entrained by high-temperature gases and their motion velocities acquired after having been mixed with gases (with the gas motion velocities varied in the range of 0.1–2.5 m/s) are established. The initial droplet motion velocities were varied from 0.5 to 5.0 m/s. Two characteristic water droplet motion modes in the counter flow of high-temperature gases under the conditions of intense phase transformations were established. It is demonstrated that the droplet motion pattern in the counter flow of high-temperature gases, as well as the droplet evaporation intensity depend in the main on the initial sizes of liquid droplets. The integral dependence Redr = f(Reg) using which it is possible to predict the droplet motion modes and trajectories, as well as phase transformation intensity with the a priori known droplet sizes and steam-droplet and gas flow velocities is obtained.
Режим доступа: по договору с организацией-держателем ресурса
Jazyk:angličtina
Vydáno: 2015
Edice:Heat And Mass Transfer And Properties Of Working Fluids And Materials
Témata:
On-line přístup:http://dx.doi.org/10.1134/S0040601515080091
Médium: Elektronický zdroj Kapitola
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=644596

MARC

LEADER 00000nla0a2200000 4500
001 644596
005 20250312162322.0
035 |a (RuTPU)RU\TPU\network\9679 
090 |a 644596 
100 |a 20151123d2015 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Experimentally determining the sizes of water flow droplets entrained by high-temperature gases  |f R. S. Volkov [et al.] 
203 |a Text  |c electronic 
225 1 |a Heat And Mass Transfer And Properties Of Working Fluids And Materials 
300 |a Title screen 
320 |a [References: p. 591-592 (35 tit.)] 
330 |a Regularities pertinent to counter mixing of the flows of high-temperature (1000 K) gases and water (with the characteristic droplet sizes from 0.05 to 0.5 mm) are experimentally investigated using high-speed (105 snapshots per second) cross-correlation video recording equipment and panoramic optic digital “tracer” visualization methods (called the Particle Image Velocimetry and Interferometric Particle Imaging techniiques). The sizes of droplets entrained by high-temperature gases and their motion velocities acquired after having been mixed with gases (with the gas motion velocities varied in the range of 0.1–2.5 m/s) are established. The initial droplet motion velocities were varied from 0.5 to 5.0 m/s. Two characteristic water droplet motion modes in the counter flow of high-temperature gases under the conditions of intense phase transformations were established. It is demonstrated that the droplet motion pattern in the counter flow of high-temperature gases, as well as the droplet evaporation intensity depend in the main on the initial sizes of liquid droplets. The integral dependence Redr = f(Reg) using which it is possible to predict the droplet motion modes and trajectories, as well as phase transformation intensity with the a priori known droplet sizes and steam-droplet and gas flow velocities is obtained. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Thermal Engineering 
463 |t Vol. 62, iss. 8  |v [P. 586-592]  |d 2015 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a высокотемпературные газы 
610 1 |a полидисперсные течения 
610 1 |a капли 
610 1 |a воды 
610 1 |a испарение 
610 1 |a оптические методы 
701 1 |a Volkov  |b R. S.  |c specialist in the field of power engineering  |c Associate Professor of the Tomsk Polytechnic University, candidate of technical Sciences  |f 1987-  |g Roman Sergeevich  |3 (RuTPU)RU\TPU\pers\33926  |9 17499 
701 1 |a Zhdanova  |b A. O.  |c specialist in the field of power engineering  |c engineer of Tomsk Polytechnic University  |f 1989-  |g Alena Olegovna  |3 (RuTPU)RU\TPU\pers\34528  |9 17909 
701 1 |a Kuznetsov  |b G. V.  |c Specialist in the field of heat power energy  |c Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences  |f 1949-  |g Geny Vladimirovich  |3 (RuTPU)RU\TPU\pers\31891  |9 15963 
701 1 |a Strizhak  |b P. A.  |c Specialist in the field of heat power energy  |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1985-  |g Pavel Alexandrovich  |3 (RuTPU)RU\TPU\pers\30871  |9 15117 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Энергетический институт (ЭНИН)  |b Кафедра теоретической и промышленной теплотехники (ТПТ)  |3 (RuTPU)RU\TPU\col\18679 
801 2 |a RU  |b 63413507  |c 20151123  |g RCR 
856 4 |u http://dx.doi.org/10.1134/S0040601515080091 
942 |c CF