On the theory of plasticity, associated with a new integral characteristic of shearing stresses
| Parent link: | IOP Conference Series: Materials Science and Engineering Vol. 91: VI International Scientific Practical Conference on Innovative Technologies and Economics in Engineering, Yurga, Russia, 21-23 May 2015.— 2015.— [012090, 7 p.] |
|---|---|
| 1. Verfasser: | |
| Körperschaft: | |
| Weitere Verfasser: | , |
| Zusammenfassung: | Title screen A new invariant of stress tensor is introduced - the mean shearing stress, resulted from the integration with respect to Mohr's circle. The invariant is used to lay down the terms of plasticity. Determining equations are written on the basis of associated flow law. Rigid variants of the model and elastoplastic ones are obtained. Characteristic surfaces with normals, coinciding with main stresses direction are demonstrated for the rigid-plastic variant. Режим доступа: по договору с организацией-держателем ресурса |
| Sprache: | Englisch |
| Veröffentlicht: |
2015
|
| Schriftenreihe: | Advanced technologies and equipment for agro-industrial complex (AIC) and mining |
| Schlagworte: | |
| Online-Zugang: | http://dx.doi.org/10.1088/1757-899X/91/1/012090 http://earchive.tpu.ru/handle/11683/20041 |
| Format: | Elektronisch Buchkapitel |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=644494 |
| Zusammenfassung: | Title screen A new invariant of stress tensor is introduced - the mean shearing stress, resulted from the integration with respect to Mohr's circle. The invariant is used to lay down the terms of plasticity. Determining equations are written on the basis of associated flow law. Rigid variants of the model and elastoplastic ones are obtained. Characteristic surfaces with normals, coinciding with main stresses direction are demonstrated for the rigid-plastic variant. Режим доступа: по договору с организацией-держателем ресурса |
|---|---|
| DOI: | 10.1088/1757-899X/91/1/012090 |