On dynamical realizations of l-conformal Galilei and Newton–Hooke algebras

Bibliographic Details
Parent link:Nuclear Physics B: Scientific Journal.— , 1956-
Vol. 896.— 2015.— [P. 244–254]
Main Author: Galajinsky A. V. Anton Vladimirovich
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Физико-технический институт (ФТИ) Кафедра высшей математики и математической физики (ВММФ)
Other Authors: Masterov I. V. Ivan Viktorovich
Summary:Title screen
In two recent papers (Aizawa et al., 2013 [15]) and (Aizawa et al., 2015 [16]), representation theory ofthe centrally extended l-conformal Galilei algebra with half-integer l has been applied so as to constructsecond order differential equations exhibiting the corresponding group as kinematical symmetry. It wassuggested to treat them as the Schrodinger equations which involve Hamiltonians describing dynamicalsystems without higher derivatives. The Hamiltonians possess two unusual features, however. First, theyinvolve the standard kinetic term only for one degree of freedom, while the remaining variables providecontributions linear in momenta. This is typical for Ostrogradsky’s canonical approach to the description ofhigher derivative systems. Second, the Hamiltonian in the second paper is not Hermitian in the conventionalsense. In this work, we study the classical limit of the quantum Hamiltonians and demonstrate that the firstof them is equivalent to the Hamiltonian describing free higher derivative nonrelativistic particles, whilethe second can be linked to the Pais–Uhlenbeck oscillator whose frequencies form the arithmetic sequence?k = (2k ? 1), k = 1,..., n. We also confront the higher derivative models with a genuine second ordersystem constructed in our recent work (Galajinsky and Masterov, 2013 [5]) which is discussed in detailfor l = 32 .
Language:English
Published: 2015
Subjects:
Online Access:http://earchive.tpu.ru/handle/11683/35968
http://dx.doi.org/10.1016/j.nuclphysb.2015.04.024
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=644111

MARC

LEADER 00000nla0a2200000 4500
001 644111
005 20250304141451.0
035 |a (RuTPU)RU\TPU\network\9160 
090 |a 644111 
100 |a 20151028d2015 k||u0rusy50 ba 
101 1 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a On dynamical realizations of l-conformal Galilei and Newton–Hooke algebras  |f A. V. Galajinsky, I. V. Masterov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 253-254 (17 tit.)] 
330 |a In two recent papers (Aizawa et al., 2013 [15]) and (Aizawa et al., 2015 [16]), representation theory ofthe centrally extended l-conformal Galilei algebra with half-integer l has been applied so as to constructsecond order differential equations exhibiting the corresponding group as kinematical symmetry. It wassuggested to treat them as the Schrodinger equations which involve Hamiltonians describing dynamicalsystems without higher derivatives. The Hamiltonians possess two unusual features, however. First, theyinvolve the standard kinetic term only for one degree of freedom, while the remaining variables providecontributions linear in momenta. This is typical for Ostrogradsky’s canonical approach to the description ofhigher derivative systems. Second, the Hamiltonian in the second paper is not Hermitian in the conventionalsense. In this work, we study the classical limit of the quantum Hamiltonians and demonstrate that the firstof them is equivalent to the Hamiltonian describing free higher derivative nonrelativistic particles, whilethe second can be linked to the Pais–Uhlenbeck oscillator whose frequencies form the arithmetic sequence?k = (2k ? 1), k = 1,..., n. We also confront the higher derivative models with a genuine second ordersystem constructed in our recent work (Galajinsky and Masterov, 2013 [5]) which is discussed in detailfor l = 32 . 
461 |t Nuclear Physics B  |o Scientific Journal  |d 1956- 
463 |t Vol. 896  |v [P. 244–254]  |d 2015 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a алгебра Галилея 
610 1 |a дифференциальные уравнения второго порядка 
610 1 |a уравнение Шредингера 
610 1 |a гамильтонианы 
700 1 |a Galajinsky  |b A. V.  |c Doctor of Physical and Mathematical Sciences, Tomsk Polytechnic University (TPU), Department of Higher Mathematics and Mathematical Physics of the Institute of Physics and Technology (HMMPD IPT)   |c Professor of the TPU  |f 1971-  |g Anton Vladimirovich  |3 (RuTPU)RU\TPU\pers\27878  |9 12894 
701 1 |a Masterov  |b I. V.  |c physicist  |c research engineer, Senior Lecturer of Tomsk Polytechnic University, candidate of physico-mathematical Sciences  |f 1987-  |g Ivan Viktorovich  |3 (RuTPU)RU\TPU\pers\35458  |9 18655 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Физико-технический институт (ФТИ)  |b Кафедра высшей математики и математической физики (ВММФ)  |3 (RuTPU)RU\TPU\col\18727 
801 2 |a RU  |b 63413507  |c 20170112  |g RCR 
856 4 0 |u http://earchive.tpu.ru/handle/11683/35968 
856 4 0 |u http://dx.doi.org/10.1016/j.nuclphysb.2015.04.024 
942 |c CF