Effective dipole-moment operator for nonrigid H2X-type molecules. Application to H2O

Xehetasun bibliografikoak
Parent link:Journal of Molecular Structure.— , 1957-
Vol. 271, № 1-2.— 1992.— [P. 119–131]
Egile nagusia: Starikov V. I.
Beste egile batzuk: Mikhailenko S. N. Semen Nikolaevich
Gaia:Title screen
A theory of the transformed dipole moment operator for nonrigid H2X-type molecules has been worked out using the method of contact transformation. The treatment takes into account the large amplitude bending motion, which is described by the coordinate ℮. Formulae obtained for the transformed dipole moment operator for bending vibration quantum bands and for combination bands have been used for the determination of the functions µex(℮), µ1x(℮) and µ3z(℮) from the expansion of the molecular fixed component µa(℮, q) (a = x, y, z) of the electric dipole moment of the H2O molecule over q normal coordinates. Some different model forms for this function have been used.
Режим доступа: по договору с организацией-держателем ресурса
Argitaratua: 1992
Gaiak:
Sarrera elektronikoa:http://dx.doi.org/10.1016/0022-2860(92)80215-4
Formatua: Baliabide elektronikoa Liburu kapitulua
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=642592
Deskribapena
Gaia:Title screen
A theory of the transformed dipole moment operator for nonrigid H2X-type molecules has been worked out using the method of contact transformation. The treatment takes into account the large amplitude bending motion, which is described by the coordinate ℮. Formulae obtained for the transformed dipole moment operator for bending vibration quantum bands and for combination bands have been used for the determination of the functions µex(℮), µ1x(℮) and µ3z(℮) from the expansion of the molecular fixed component µa(℮, q) (a = x, y, z) of the electric dipole moment of the H2O molecule over q normal coordinates. Some different model forms for this function have been used.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1016/0022-2860(92)80215-4