Hidden symmetries of integrable conformal mechanical systems

التفاصيل البيبلوغرافية
Parent link:Physics Letters A: Scientific Journal
Vol. 374, iss. 6.— 2010.— [P. 801–806]
مؤلفون آخرون: Akopyan (Hakobyan) T. S. Tigran Stepanovich, Krivonos S. Sergey, Lechtenfeld O. Olaf, Nersessian A. P. Armen Petrosovich
الملخص:Title screen
We split the generic conformal mechanical system into a “radial” and an “angular” part, where the latter is defined as the Hamiltonian system on the orbit of the conformal group, with the Casimir function in the role of the Hamiltonian. We reduce the analysis of the constants of motion of the full system to the study of certain differential equations on this orbit. For integrable mechanical systems, the conformal invariance renders them superintegrable, yielding an additional series of conserved quantities originally found by Wojciechowski in the rational Calogero model. Finally, we show that, starting from any N=4supersymmetric “angular” Hamiltonian system one may construct a new system with full N=4superconformal D(1,2;α) symmetry.
Режим доступа: по договору с организацией-держателем ресурса
اللغة:الإنجليزية
منشور في: 2010
الموضوعات:
الوصول للمادة أونلاين:http://dx.doi.org/10.1016/j.physleta.2009.12.006
التنسيق: الكتروني فصل الكتاب
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=641564

MARC

LEADER 00000naa0a2200000 4500
001 641564
005 20250331095241.0
035 |a (RuTPU)RU\TPU\network\6481 
035 |a RU\TPU\network\6478 
090 |a 641564 
100 |a 20150521d2010 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Hidden symmetries of integrable conformal mechanical systems  |f T. S. Akopyan (Hakobyan) [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 806 (18 tit.)] 
330 |a We split the generic conformal mechanical system into a “radial” and an “angular” part, where the latter is defined as the Hamiltonian system on the orbit of the conformal group, with the Casimir function in the role of the Hamiltonian. We reduce the analysis of the constants of motion of the full system to the study of certain differential equations on this orbit. For integrable mechanical systems, the conformal invariance renders them superintegrable, yielding an additional series of conserved quantities originally found by Wojciechowski in the rational Calogero model. Finally, we show that, starting from any N=4supersymmetric “angular” Hamiltonian system one may construct a new system with full N=4superconformal D(1,2;α) symmetry. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Physics Letters A  |o Scientific Journal 
463 |t Vol. 374, iss. 6  |v [P. 801–806]  |d 2010 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Akopyan (Hakobyan)  |b T. S.  |c physicist  |c Professor of Tomsk Polytechnic University, doctor of physical and mathematical sciences  |f 1965-  |g Tigran Stepanovich  |3 (RuTPU)RU\TPU\pers\35457  |9 18654 
701 1 |a Krivonos  |b S.  |g Sergey 
701 1 |a Lechtenfeld  |b O.  |g Olaf 
701 1 |a Nersessian  |b A. P.  |c physicist  |c Professor of Tomsk Polytechnic University  |f 1964-  |g Armen Petrosovich  |3 (RuTPU)RU\TPU\pers\34605  |9 17967 
801 2 |a RU  |b 63413507  |c 20151028  |g RCR 
856 4 |u http://dx.doi.org/10.1016/j.physleta.2009.12.006 
942 |c CF