Hidden symmetries of integrable conformal mechanical systems
| Parent link: | Physics Letters A: Scientific Journal Vol. 374, iss. 6.— 2010.— [P. 801–806] |
|---|---|
| مؤلفون آخرون: | , , , |
| الملخص: | Title screen We split the generic conformal mechanical system into a “radial” and an “angular” part, where the latter is defined as the Hamiltonian system on the orbit of the conformal group, with the Casimir function in the role of the Hamiltonian. We reduce the analysis of the constants of motion of the full system to the study of certain differential equations on this orbit. For integrable mechanical systems, the conformal invariance renders them superintegrable, yielding an additional series of conserved quantities originally found by Wojciechowski in the rational Calogero model. Finally, we show that, starting from any N=4supersymmetric “angular” Hamiltonian system one may construct a new system with full N=4superconformal D(1,2;α) symmetry. Режим доступа: по договору с организацией-держателем ресурса |
| اللغة: | الإنجليزية |
| منشور في: |
2010
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | http://dx.doi.org/10.1016/j.physleta.2009.12.006 |
| التنسيق: | الكتروني فصل الكتاب |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=641564 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 641564 | ||
| 005 | 20250331095241.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\6481 | ||
| 035 | |a RU\TPU\network\6478 | ||
| 090 | |a 641564 | ||
| 100 | |a 20150521d2010 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a US | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Hidden symmetries of integrable conformal mechanical systems |f T. S. Akopyan (Hakobyan) [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: p. 806 (18 tit.)] | ||
| 330 | |a We split the generic conformal mechanical system into a “radial” and an “angular” part, where the latter is defined as the Hamiltonian system on the orbit of the conformal group, with the Casimir function in the role of the Hamiltonian. We reduce the analysis of the constants of motion of the full system to the study of certain differential equations on this orbit. For integrable mechanical systems, the conformal invariance renders them superintegrable, yielding an additional series of conserved quantities originally found by Wojciechowski in the rational Calogero model. Finally, we show that, starting from any N=4supersymmetric “angular” Hamiltonian system one may construct a new system with full N=4superconformal D(1,2;α) symmetry. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t Physics Letters A |o Scientific Journal | ||
| 463 | |t Vol. 374, iss. 6 |v [P. 801–806] |d 2010 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 701 | 1 | |a Akopyan (Hakobyan) |b T. S. |c physicist |c Professor of Tomsk Polytechnic University, doctor of physical and mathematical sciences |f 1965- |g Tigran Stepanovich |3 (RuTPU)RU\TPU\pers\35457 |9 18654 | |
| 701 | 1 | |a Krivonos |b S. |g Sergey | |
| 701 | 1 | |a Lechtenfeld |b O. |g Olaf | |
| 701 | 1 | |a Nersessian |b A. P. |c physicist |c Professor of Tomsk Polytechnic University |f 1964- |g Armen Petrosovich |3 (RuTPU)RU\TPU\pers\34605 |9 17967 | |
| 801 | 2 | |a RU |b 63413507 |c 20151028 |g RCR | |
| 856 | 4 | |u http://dx.doi.org/10.1016/j.physleta.2009.12.006 | |
| 942 | |c CF | ||