Quantum mechanics model on a Kдhler conifold

Bibliographische Detailangaben
Parent link:Physical Review D: Particles, Fields, Gravitation, and Cosmology
Vol. 70, iss. 4.— 2004.— [045006, 5 p.]
1. Verfasser: Bellucci S. Stefano
Weitere Verfasser: Nersessian A. P. Armen Petrosovich, Yeranyan A. Armen
Zusammenfassung:Title screen
We propose an exactly solvable model of the quantum oscillator on the class of Kдhler spaces (with conic singularities), connected with two-dimensional complex projective spaces. Its energy spectrum is nondegenerate in the orbital quantum number, when the space has nonconstant curvature. We reduce the model to a three-dimensional system interacting with the Dirac monopole. Owing to noncommutativity of the reduction and quantization procedures, the Hamiltonian of the reduced system gets nontrivial quantum corrections. We transform the reduced system into a MIC-Kepler-like one and find that quantum corrections arise only in its energy and coupling constant. We present the exact spectrum of the generalized MIC-Kepler system. The one-(complex) dimensional analog of the suggested model is formulated on the Riemann surface over the complex projective plane and could be interpreted as a system with fractional spin.
Режим доступа: по договору с организацией-держателем ресурса
Sprache:Englisch
Veröffentlicht: 2004
Schlagworte:
Online-Zugang:http://dx.doi.org/10.1103/PhysRevD.70.045006
http://arxiv.org/abs/hep-th/0312323
Format: Elektronisch Buchkapitel
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=641525

MARC

LEADER 00000naa0a2200000 4500
001 641525
005 20250328133014.0
035 |a (RuTPU)RU\TPU\network\6442 
035 |a RU\TPU\network\6440 
090 |a 641525 
100 |a 20150521d2004 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Quantum mechanics model on a Kдhler conifold  |f S. Bellucci, A. P. Nersessian, A. Yeranyan 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 11 tit.] 
330 |a We propose an exactly solvable model of the quantum oscillator on the class of Kдhler spaces (with conic singularities), connected with two-dimensional complex projective spaces. Its energy spectrum is nondegenerate in the orbital quantum number, when the space has nonconstant curvature. We reduce the model to a three-dimensional system interacting with the Dirac monopole. Owing to noncommutativity of the reduction and quantization procedures, the Hamiltonian of the reduced system gets nontrivial quantum corrections. We transform the reduced system into a MIC-Kepler-like one and find that quantum corrections arise only in its energy and coupling constant. We present the exact spectrum of the generalized MIC-Kepler system. The one-(complex) dimensional analog of the suggested model is formulated on the Riemann surface over the complex projective plane and could be interpreted as a system with fractional spin. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Physical Review D  |o Particles, Fields, Gravitation, and Cosmology  |o Scientific Journal 
463 |t Vol. 70, iss. 4  |v [045006, 5 p.]  |d 2004 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
700 1 |a Bellucci  |b S.  |g Stefano 
701 1 |a Nersessian  |b A. P.  |c physicist  |c Professor of Tomsk Polytechnic University  |f 1964-  |g Armen Petrosovich  |3 (RuTPU)RU\TPU\pers\34605  |9 17967 
701 1 |a Yeranyan  |b A.  |g Armen 
801 2 |a RU  |b 63413507  |c 20150521  |g RCR 
856 4 |u http://dx.doi.org/10.1103/PhysRevD.70.045006 
856 4 |u http://arxiv.org/abs/hep-th/0312323 
942 |c CF