Three-dimensional oscillator and Coulomb systems reduced from Kahler spaces

Bibliographic Details
Parent link:Journal of Physics A: Mathematical and General: Scientific Journal
Vol. 37, iss. 7.— 2004.— [P. 2791-2801]
Main Author: Nersessian A. P. Armen Petrosovich
Other Authors: Yeranyan A. Armen
Summary:Title screen
We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kähler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kähler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid originate. Then we construct the superintegrable oscillator system on three-dimensional sphere and hyperboloid, coupled to a monopole, and find their four-dimensional origins. In the latter case the metric of configuration space is a non-Kähler one. Finally, we extend these results to the family of Kähler spaces with conic singularities.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2004
Subjects:
Online Access:http://dx.doi.org/10.1088/0305-4470/37/7/020
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=641439

MARC

LEADER 00000naa0a2200000 4500
001 641439
005 20250327153224.0
035 |a (RuTPU)RU\TPU\network\6356 
035 |a RU\TPU\network\541 
090 |a 641439 
100 |a 20150519d2004 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Three-dimensional oscillator and Coulomb systems reduced from Kahler spaces  |f A. P. Nersessian, A. Yeranyan 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 13 tit.] 
330 |a We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kähler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kähler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid originate. Then we construct the superintegrable oscillator system on three-dimensional sphere and hyperboloid, coupled to a monopole, and find their four-dimensional origins. In the latter case the metric of configuration space is a non-Kähler one. Finally, we extend these results to the family of Kähler spaces with conic singularities. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Journal of Physics A: Mathematical and General  |o Scientific Journal 
463 |t Vol. 37, iss. 7  |v [P. 2791-2801]  |d 2004 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
700 1 |a Nersessian  |b A. P.  |c physicist  |c Professor of Tomsk Polytechnic University  |f 1964-  |g Armen Petrosovich  |3 (RuTPU)RU\TPU\pers\34605  |9 17967 
701 1 |a Yeranyan  |b A.  |g Armen 
801 2 |a RU  |b 63413507  |c 20150519  |g RCR 
856 4 |u http://dx.doi.org/10.1088/0305-4470/37/7/020 
942 |c CF