Three-dimensional oscillator and Coulomb systems reduced from Kahler spaces
| Parent link: | Journal of Physics A: Mathematical and General: Scientific Journal Vol. 37, iss. 7.— 2004.— [P. 2791-2801] |
|---|---|
| Main Author: | |
| Other Authors: | |
| Summary: | Title screen We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kähler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kähler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid originate. Then we construct the superintegrable oscillator system on three-dimensional sphere and hyperboloid, coupled to a monopole, and find their four-dimensional origins. In the latter case the metric of configuration space is a non-Kähler one. Finally, we extend these results to the family of Kähler spaces with conic singularities. Режим доступа: по договору с организацией-держателем ресурса |
| Published: |
2004
|
| Subjects: | |
| Online Access: | http://dx.doi.org/10.1088/0305-4470/37/7/020 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=641439 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 641439 | ||
| 005 | 20250327153224.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\6356 | ||
| 035 | |a RU\TPU\network\541 | ||
| 090 | |a 641439 | ||
| 100 | |a 20150519d2004 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a US | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Three-dimensional oscillator and Coulomb systems reduced from Kahler spaces |f A. P. Nersessian, A. Yeranyan | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 13 tit.] | ||
| 330 | |a We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kähler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kähler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid originate. Then we construct the superintegrable oscillator system on three-dimensional sphere and hyperboloid, coupled to a monopole, and find their four-dimensional origins. In the latter case the metric of configuration space is a non-Kähler one. Finally, we extend these results to the family of Kähler spaces with conic singularities. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t Journal of Physics A: Mathematical and General |o Scientific Journal | ||
| 463 | |t Vol. 37, iss. 7 |v [P. 2791-2801] |d 2004 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 700 | 1 | |a Nersessian |b A. P. |c physicist |c Professor of Tomsk Polytechnic University |f 1964- |g Armen Petrosovich |3 (RuTPU)RU\TPU\pers\34605 |9 17967 | |
| 701 | 1 | |a Yeranyan |b A. |g Armen | |
| 801 | 2 | |a RU |b 63413507 |c 20150519 |g RCR | |
| 856 | 4 | |u http://dx.doi.org/10.1088/0305-4470/37/7/020 | |
| 942 | |c CF | ||