On two-dimensional integrable models with a cubic or quartic integral of motion

Bibliografske podrobnosti
Parent link:Journal of High Energy Physics.— , 1997-
№ 9.— 2013.— [P. 113-125]
Glavni avtor: Galajinsky A. V. Anton Vladimirovich
Korporativna značnica: Национальный исследовательский Томский политехнический университет (ТПУ) Физико-технический институт (ФТИ) Кафедра высшей математики и математической физики (ВММФ)
Drugi avtorji: Lechtenfeld O. Olaf
Izvleček:Title screen
Integrable two-dimensional models which possess an integral of motion cubic or quartic in velocities are governed by a single prepotential, which obeys a nonlinear partial differential equation. Taking into account the latter's invariance under continuous rescalings and a dihedral symmetry, we construct new integrable models with a cubic or quartic integral, each of which involves either one or two continuous parameters. A reducible case related to the two-dimensional wave equation is discussed as well. We conjecture a hidden D 2n dihedral symmetry for models with an integral of nth order in the velocities.
Режим доступа: по договору с организацией-держателем ресурса
Jezik:angleščina
Izdano: 2013
Teme:
Online dostop:http://dx.doi.org/10.1007/JHEP09(2013)113
Format: Elektronski Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=640353

MARC

LEADER 00000naa0a2200000 4500
001 640353
005 20250304103620.0
035 |a (RuTPU)RU\TPU\network\4899 
035 |a RU\TPU\network\32 
090 |a 640353 
100 |a 20150415d2013 k||y0rusy50 ba 
101 0 |a eng 
102 |a DE 
135 |a drnn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a On two-dimensional integrable models with a cubic or quartic integral of motion  |f A. V. Galajinsky, O. Lechtenfeld 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 122-125 (35 tit.)] 
330 |a Integrable two-dimensional models which possess an integral of motion cubic or quartic in velocities are governed by a single prepotential, which obeys a nonlinear partial differential equation. Taking into account the latter's invariance under continuous rescalings and a dihedral symmetry, we construct new integrable models with a cubic or quartic integral, each of which involves either one or two continuous parameters. A reducible case related to the two-dimensional wave equation is discussed as well. We conjecture a hidden D 2n dihedral symmetry for models with an integral of nth order in the velocities. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Journal of High Energy Physics  |d 1997- 
463 |t № 9  |v [P. 113-125]  |d 2013 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a Integrable Equations in Physics 
610 1 |a Discrete and Finite Symmetries 
700 1 |a Galajinsky  |b A. V.  |c Doctor of Physical and Mathematical Sciences, Tomsk Polytechnic University (TPU), Department of Higher Mathematics and Mathematical Physics of the Institute of Physics and Technology (HMMPD IPT)   |c Professor of the TPU  |f 1971-  |g Anton Vladimirovich  |3 (RuTPU)RU\TPU\pers\27878  |9 12894 
701 1 |a Lechtenfeld  |b O.  |g Olaf 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Физико-технический институт (ФТИ)  |b Кафедра высшей математики и математической физики (ВММФ)  |3 (RuTPU)RU\TPU\col\18727 
801 2 |a RU  |b 63413507  |c 20171120  |g RCR 
856 4 |u http://dx.doi.org/10.1007/JHEP09(2013)113 
942 |c CF