Dynamical realizations of l-conformal Newton–Hooke group

Bibliographic Details
Parent link:Physics Letters B: Particle Physics, Nuclear Physics and Cosmology
Vol. 723, № 1–3.— 2013.— [P. 190–195]
Main Author: Galajinsky A. V. Anton Vladimirovich
Other Authors: Masterov I. V. Ivan Viktorovich
Summary:Title screen
The method of nonlinear realizations and the technique previously developed in [A. Galajinsky, I. Masterov, Nucl. Phys. B 866 (2013) 212, arXiv:1208.1403] are used to construct a dynamical system without higher derivative terms, which holds invariant under the l-conformal Newton–Hooke group. A configuration space of the model involves coordinates, which parametrize a particle moving in d spatial dimensions and a conformal mode, which gives rise to an effective external field. The dynamical system describes a generalized multi-dimensional oscillator, which undergoes accelerated/decelerated motion in an ellipse in accord with evolution of the conformal mode. Higher derivative formulations are discussed as well. It is demonstrated that the multi-dimensional Pais–Uhlenbeck oscillator enjoys the View the MathML source-conformal Newton–Hooke symmetry for a particular choice of its frequencies.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2013
Subjects:
Online Access:http://dx.doi.org/10.1016/j.physletb.2013.04.054
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=640330

MARC

LEADER 00000naa0a2200000 4500
001 640330
005 20250304102331.0
035 |a (RuTPU)RU\TPU\network\4876 
035 |a RU\TPU\network\4391 
090 |a 640330 
100 |a 20150415d2013 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Dynamical realizations of l-conformal Newton–Hooke group  |f A. V. Galajinsky, I. V. Masterov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 194-195 (24 tit.)] 
330 |a The method of nonlinear realizations and the technique previously developed in [A. Galajinsky, I. Masterov, Nucl. Phys. B 866 (2013) 212, arXiv:1208.1403] are used to construct a dynamical system without higher derivative terms, which holds invariant under the l-conformal Newton–Hooke group. A configuration space of the model involves coordinates, which parametrize a particle moving in d spatial dimensions and a conformal mode, which gives rise to an effective external field. The dynamical system describes a generalized multi-dimensional oscillator, which undergoes accelerated/decelerated motion in an ellipse in accord with evolution of the conformal mode. Higher derivative formulations are discussed as well. It is demonstrated that the multi-dimensional Pais–Uhlenbeck oscillator enjoys the View the MathML source-conformal Newton–Hooke symmetry for a particular choice of its frequencies. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Physics Letters B  |o Particle Physics, Nuclear Physics and Cosmology 
463 |t Vol. 723, № 1–3  |v [P. 190–195]  |d 2013 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a dynamical realizations of l-conformal Newton–Hooke group 
610 1 |a dynamical realizations 
610 1 |a pais–Uhlenbeck oscillator 
700 1 |a Galajinsky  |b A. V.  |c Doctor of Physical and Mathematical Sciences, Tomsk Polytechnic University (TPU), Department of Higher Mathematics and Mathematical Physics of the Institute of Physics and Technology (HMMPD IPT)   |c Professor of the TPU  |f 1971-  |g Anton Vladimirovich  |3 (RuTPU)RU\TPU\pers\27878  |9 12894 
701 1 |a Masterov  |b I. V.  |c physicist  |c research engineer, Senior Lecturer of Tomsk Polytechnic University, candidate of physico-mathematical Sciences  |f 1987-  |g Ivan Viktorovich  |3 (RuTPU)RU\TPU\pers\35458  |9 18655 
801 2 |a RU  |b 63413507  |c 20160321  |g RCR 
856 4 |u http://dx.doi.org/10.1016/j.physletb.2013.04.054 
942 |c CF