Detection Accuracy of the Temporary State of Complex Signals Using Phase-Frequency Tracking Methods with Equilibrium and Non-equilibrium Processing
| Parent link: | Advances in Intelligent Systems and Computing Vol. 342: Soft Computing in Computer and Information Science.— 2015.— [P. 27-36] |
|---|---|
| Auteur principal: | |
| Collectivité auteur: | |
| Autres auteurs: | , |
| Résumé: | Title screen This report proposes the phase-frequency tracking methods of complex signals based on optimal and suboptimal processing of PFC and group delay functions (FGZ). At the same time, the cases of correlated and uncorrelated samples of PFC and FGZ are analyzed herein. It is demonstrated that the correlation in the samples does not change the processing structure, but only the weight factors are changed. The phase-frequency algorithms with equilibrium and nonequilibrium processing are developed based on the proposed methods. It is shown that the transition to equilibrium processing enables a significant level down the requirements to a priori information about the properties of the useful signal, while nonequilibrium processing increases the resolution of the signals significantly. The conducted analytical argument and results of the simulation experiments on the produced simulated wave fields have testified that at propagation of the complex signals in dispersive media, these algorithms can assure rather high detection accuracy of the signal temporary state, even when the signal-to-noise ratio is close to 1. The results of the simulation experiments are justified by the real data obtained in processing the seismic wave fields. Режим доступа: по договору с организацией-держателем ресурса |
| Langue: | anglais |
| Publié: |
2015
|
| Sujets: | |
| Accès en ligne: | http://dx.doi.org/10.1007/978-3-319-15147-2_3 |
| Format: | Électronique Chapitre de livre |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=640164 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 640164 | ||
| 005 | 20250601154122.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\4694 | ||
| 090 | |a 640164 | ||
| 100 | |a 20150410d2015 k y0engy50 ba | ||
| 101 | 0 | |a eng | |
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Detection Accuracy of the Temporary State of Complex Signals Using Phase-Frequency Tracking Methods with Equilibrium and Non-equilibrium Processing |f A. I. Kochegurov, E. A. Kochegurova, N. A. Kupina | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: р. 36 (12 tit.)] | ||
| 330 | |a This report proposes the phase-frequency tracking methods of complex signals based on optimal and suboptimal processing of PFC and group delay functions (FGZ). At the same time, the cases of correlated and uncorrelated samples of PFC and FGZ are analyzed herein. It is demonstrated that the correlation in the samples does not change the processing structure, but only the weight factors are changed. The phase-frequency algorithms with equilibrium and nonequilibrium processing are developed based on the proposed methods. It is shown that the transition to equilibrium processing enables a significant level down the requirements to a priori information about the properties of the useful signal, while nonequilibrium processing increases the resolution of the signals significantly. The conducted analytical argument and results of the simulation experiments on the produced simulated wave fields have testified that at propagation of the complex signals in dispersive media, these algorithms can assure rather high detection accuracy of the signal temporary state, even when the signal-to-noise ratio is close to 1. The results of the simulation experiments are justified by the real data obtained in processing the seismic wave fields. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t Advances in Intelligent Systems and Computing | ||
| 463 | |t Vol. 342: Soft Computing in Computer and Information Science |v [P. 27-36] |d 2015 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 700 | 1 | |a Kochegurov |b A. I. |c specialist in the field of Informatics and computer engineering |c associate Professor of Tomsk Polytechnic University, candidate of technical Sciences |f 1954- |g Aleksandr Ivanovich |3 (RuTPU)RU\TPU\pers\34160 |9 17700 | |
| 701 | 1 | |a Kochegurova |b E. A. |c specialist in the field of Informatics and computer engineering |c associate Professor of Tomsk Polytechnic University, candidate of technical Sciences |f 1958- |g Elena Alekseevna |3 (RuTPU)RU\TPU\pers\33442 |9 17123 | |
| 701 | 1 | |a Kupina |b N. A. |g Nataljya Artemovna | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Институт кибернетики (ИК) |b Кафедра автоматики и компьютерных систем (АИКС) |3 (RuTPU)RU\TPU\col\18698 |
| 801 | 2 | |a RU |b 63413507 |c 20150410 |g RCR | |
| 850 | |a 63413507 | ||
| 856 | 4 | |u http://dx.doi.org/10.1007/978-3-319-15147-2_3 | |
| 942 | |c CF | ||