Ion trajectories calculation for negatively biased needle cathode in volume discharge plasma

Détails bibliographiques
Parent link:Journal of Physics: Conference Series
Vol. 552 : International Congress on Energy Fluxes and Radiation Effects (EFRE-2014), 21–26 September 2014, Tomsk, Russia.— 2014.— [012009, 6 p.]
Collectivité auteur: Национальный исследовательский Томский политехнический университет (ТПУ) Институт физики высоких технологий (ИФВТ) Кафедра техники и электрофизики высоких напряжений (ТЭВН)
Autres auteurs: Remnev A. G., Uemura K., Kozyrev A. V., Lopatin V. V. Vladimir Vasilyevich
Résumé:Title screen
Ion trajectories were simulated for the case of multi-needle negatively biased electrode immerged into the volume type plasma. The model was simplified to the 2d case with planar plasma boundary. The electrical field distribution was calculated with the FEA method. Resulting piece wise function was then used to predict ion trajectories emitted from the plasma sheath boundary. Series of the ion trajectories were simulated for different plasma and accelerating gap parameters using single particle analysis. Distribution of the ion current density along the needle surface and angles of the ion incidence were obtained from the simulation. Experimental and theoretical etching profiles are consistent.
Режим доступа: по договору с организацией-держателем ресурса
Langue:anglais
Publié: 2014
Sujets:
Accès en ligne:http://iopscience.iop.org/1742-6596/552/1/012009
Format: Électronique Chapitre de livre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=639133
Description
Résumé:Title screen
Ion trajectories were simulated for the case of multi-needle negatively biased electrode immerged into the volume type plasma. The model was simplified to the 2d case with planar plasma boundary. The electrical field distribution was calculated with the FEA method. Resulting piece wise function was then used to predict ion trajectories emitted from the plasma sheath boundary. Series of the ion trajectories were simulated for different plasma and accelerating gap parameters using single particle analysis. Distribution of the ion current density along the needle surface and angles of the ion incidence were obtained from the simulation. Experimental and theoretical etching profiles are consistent.
Режим доступа: по договору с организацией-держателем ресурса