Thermally assisted quantum annealing of a 16-qubit problem
| Parent link: | Nature Communications.— , 2010- № 4.— 2013.— [4 р.] |
|---|---|
| Autor Corporativo: | |
| Outros autores: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Summary: | Title screen Efforts to develop useful quantum computers have been blocked primarily by environmental noise. Quantum annealing is a scheme of quantum computation that is predicted to be more robust against noise, because despite the thermal environment mixing the system’s state in the energy basis, the system partially retains coherence in the computational basis, and hence is able to establish well-defined eigenstates. Here we examine the environment’s effect on quantum annealing using 16 qubits of a superconducting quantum processor. For a problem instance with an isolated small-gap anticrossing between the lowest two energy levels, we experimentally demonstrate that, even with annealing times eight orders of magnitude longer than the predicted single-qubit decoherence time, the probabilities of performing a successful computation are similar to those expected for a fully coherent system. Moreover, for the problem studied, we show that quantum annealing can take advantage of a thermal environment to achieve a speedup factor of up to 1,000 over a closed system Режим доступа: по договору с организацией-держателем ресурса |
| Idioma: | inglés |
| Publicado: |
2013
|
| Subjects: | |
| Acceso en liña: | http://www.nature.com/ncomms/journal/v4/n5/full/ncomms2920.html http://www.readcube.com/articles/10.1038/ncomms2920 |
| Formato: | Electrónico Capítulo de libro |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=637088 |
MARC
| LEADER | 00000nla0a2200000 4500 | ||
|---|---|---|---|
| 001 | 637088 | ||
| 005 | 20260213140111.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\1182 | ||
| 035 | |a RU\TPU\network\1100 | ||
| 090 | |a 637088 | ||
| 100 | |a 20140513d2013 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a GB | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Thermally assisted quantum annealing of a 16-qubit problem |f N. G. Dickson [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 330 | |a Efforts to develop useful quantum computers have been blocked primarily by environmental noise. Quantum annealing is a scheme of quantum computation that is predicted to be more robust against noise, because despite the thermal environment mixing the system’s state in the energy basis, the system partially retains coherence in the computational basis, and hence is able to establish well-defined eigenstates. Here we examine the environment’s effect on quantum annealing using 16 qubits of a superconducting quantum processor. For a problem instance with an isolated small-gap anticrossing between the lowest two energy levels, we experimentally demonstrate that, even with annealing times eight orders of magnitude longer than the predicted single-qubit decoherence time, the probabilities of performing a successful computation are similar to those expected for a fully coherent system. Moreover, for the problem studied, we show that quantum annealing can take advantage of a thermal environment to achieve a speedup factor of up to 1,000 over a closed system | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t Nature Communications |d 2010- | ||
| 463 | |t № 4 |v [4 р.] |d 2013 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 701 | 1 | |a Dickson |b N. G. | |
| 701 | 1 | |a Johnson |b M. W. | |
| 701 | 1 | |a Amin |b M. H. | |
| 701 | 1 | |a Harris |b R. | |
| 701 | 1 | |a Altomare |b F. | |
| 701 | 1 | |a Berkley |b A. J. | |
| 701 | 1 | |a Bunyk |b P. | |
| 701 | 1 | |a Cai |b J. | |
| 701 | 1 | |a Chapple |b E. M. | |
| 701 | 1 | |a Chavez |b P. | |
| 701 | 1 | |a Cioata |b F. | |
| 701 | 1 | |a Cirip |b T. | |
| 701 | 1 | |a Debuen |b P. | |
| 701 | 1 | |a Drew-Brook |b M. | |
| 701 | 1 | |a Enderud |b C. | |
| 701 | 1 | |a Gildert |b S. | |
| 701 | 1 | |a Hilton |b J. P. | |
| 701 | 1 | |a Hoskinson |b E. | |
| 701 | 1 | |a Karimi |b K. | |
| 701 | 1 | |a Ladizinsky |b E. | |
| 701 | 1 | |a Ladizinsky |b N. | |
| 701 | 1 | |a Lanting |b T. | |
| 701 | 1 | |a Mahon |b T. | |
| 701 | 1 | |a Neufeld |b R. | |
| 701 | 1 | |a Oh |b T. | |
| 701 | 1 | |a Perminov |b I. | |
| 701 | 1 | |a Petroff |b C. | |
| 701 | 1 | |a Przybysz |b A. | |
| 701 | 1 | |a Rich |b C. | |
| 701 | 1 | |a Spear |b P. | |
| 701 | 1 | |a Tcaciuc |b A. | |
| 701 | 1 | |a Thom |b M. C. | |
| 701 | 1 | |a Tolkacheva |b E. | |
| 701 | 1 | |a Uchaykin |b S. V. |c specialist in the field of non-destructive testing |c Engineer of Tomsk Polytechnic University, Doctor of physical and mathematical sciences |f 1963- |g Sergey Victorovich |3 (RuTPU)RU\TPU\pers\32279 | |
| 701 | 1 | |a Wang |b J. | |
| 701 | 1 | |a Wilson |b A. B. | |
| 701 | 1 | |a Rose |b G. | |
| 701 | 1 | |a Merali |b Z. | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |c (2009- ) |9 26305 |
| 801 | 2 | |a RU |b 63413507 |c 20140513 |g RCR | |
| 850 | |a 63413507 | ||
| 856 | 4 | |u http://www.nature.com/ncomms/journal/v4/n5/full/ncomms2920.html | |
| 856 | 4 | |u http://www.readcube.com/articles/10.1038/ncomms2920 | |
| 942 | |c CF | ||