Thermally assisted quantum annealing of a 16-qubit problem

Detalles Bibliográficos
Parent link:Nature Communications.— , 2010-
№ 4.— 2013.— [4 р.]
Autor Corporativo: Национальный исследовательский Томский политехнический университет
Outros autores: Dickson N. G., Johnson M. W., Amin M. H., Harris R., Altomare F., Berkley A. J., Bunyk P., Cai J., Chapple E. M., Chavez P., Cioata F., Cirip T., Debuen P., Drew-Brook M., Enderud C., Gildert S., Hilton J. P., Hoskinson E., Karimi K., Ladizinsky E., Ladizinsky N., Lanting T., Mahon T., Neufeld R., Oh T., Perminov I., Petroff C., Przybysz A., Rich C., Spear P., Tcaciuc A., Thom M. C., Tolkacheva E., Uchaykin S. V. Sergey Victorovich, Wang J., Wilson A. B., Rose G., Merali Z.
Summary:Title screen
Efforts to develop useful quantum computers have been blocked primarily by environmental noise. Quantum annealing is a scheme of quantum computation that is predicted to be more robust against noise, because despite the thermal environment mixing the system’s state in the energy basis, the system partially retains coherence in the computational basis, and hence is able to establish well-defined eigenstates. Here we examine the environment’s effect on quantum annealing using 16 qubits of a superconducting quantum processor. For a problem instance with an isolated small-gap anticrossing between the lowest two energy levels, we experimentally demonstrate that, even with annealing times eight orders of magnitude longer than the predicted single-qubit decoherence time, the probabilities of performing a successful computation are similar to those expected for a fully coherent system. Moreover, for the problem studied, we show that quantum annealing can take advantage of a thermal environment to achieve a speedup factor of up to 1,000 over a closed system
Режим доступа: по договору с организацией-держателем ресурса
Idioma:inglés
Publicado: 2013
Subjects:
Acceso en liña:http://www.nature.com/ncomms/journal/v4/n5/full/ncomms2920.html
http://www.readcube.com/articles/10.1038/ncomms2920
Formato: Electrónico Capítulo de libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=637088

MARC

LEADER 00000nla0a2200000 4500
001 637088
005 20260213140111.0
035 |a (RuTPU)RU\TPU\network\1182 
035 |a RU\TPU\network\1100 
090 |a 637088 
100 |a 20140513d2013 k||y0rusy50 ba 
101 0 |a eng 
102 |a GB 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Thermally assisted quantum annealing of a 16-qubit problem  |f N. G. Dickson [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a Efforts to develop useful quantum computers have been blocked primarily by environmental noise. Quantum annealing is a scheme of quantum computation that is predicted to be more robust against noise, because despite the thermal environment mixing the system’s state in the energy basis, the system partially retains coherence in the computational basis, and hence is able to establish well-defined eigenstates. Here we examine the environment’s effect on quantum annealing using 16 qubits of a superconducting quantum processor. For a problem instance with an isolated small-gap anticrossing between the lowest two energy levels, we experimentally demonstrate that, even with annealing times eight orders of magnitude longer than the predicted single-qubit decoherence time, the probabilities of performing a successful computation are similar to those expected for a fully coherent system. Moreover, for the problem studied, we show that quantum annealing can take advantage of a thermal environment to achieve a speedup factor of up to 1,000 over a closed system 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Nature Communications  |d 2010- 
463 |t № 4  |v [4 р.]  |d 2013 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Dickson  |b N. G. 
701 1 |a Johnson  |b M. W. 
701 1 |a Amin  |b M. H. 
701 1 |a Harris  |b R. 
701 1 |a Altomare  |b F. 
701 1 |a Berkley  |b A. J. 
701 1 |a Bunyk  |b P. 
701 1 |a Cai  |b J. 
701 1 |a Chapple  |b E. M. 
701 1 |a Chavez  |b P. 
701 1 |a Cioata  |b F. 
701 1 |a Cirip  |b T. 
701 1 |a Debuen  |b P. 
701 1 |a Drew-Brook  |b M. 
701 1 |a Enderud  |b C. 
701 1 |a Gildert  |b S. 
701 1 |a Hilton  |b J. P. 
701 1 |a Hoskinson  |b E. 
701 1 |a Karimi  |b K. 
701 1 |a Ladizinsky  |b E. 
701 1 |a Ladizinsky  |b N. 
701 1 |a Lanting  |b T. 
701 1 |a Mahon  |b T. 
701 1 |a Neufeld  |b R. 
701 1 |a Oh  |b T. 
701 1 |a Perminov  |b I. 
701 1 |a Petroff  |b C. 
701 1 |a Przybysz  |b A. 
701 1 |a Rich  |b C. 
701 1 |a Spear  |b P. 
701 1 |a Tcaciuc  |b A. 
701 1 |a Thom  |b M. C. 
701 1 |a Tolkacheva  |b E. 
701 1 |a Uchaykin  |b S. V.  |c specialist in the field of non-destructive testing  |c Engineer of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1963-  |g Sergey Victorovich  |3 (RuTPU)RU\TPU\pers\32279 
701 1 |a Wang  |b J. 
701 1 |a Wilson  |b A. B. 
701 1 |a Rose  |b G. 
701 1 |a Merali  |b Z. 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |c (2009- )  |9 26305 
801 2 |a RU  |b 63413507  |c 20140513  |g RCR 
850 |a 63413507 
856 4 |u http://www.nature.com/ncomms/journal/v4/n5/full/ncomms2920.html 
856 4 |u http://www.readcube.com/articles/10.1038/ncomms2920 
942 |c CF